scipy: Failures on 0.17.x with MKL
Time for this release candidate’s set of MKL failures. Do other people test using MKL, or should I try to make a habit of doing this check before each release?
icc --version
is icc (ICC) 16.0.1 20151021
numpy
on maintenance/1.10.x
branch, version 1.10.0.dev0+075cc98
, numpy.test('full')
passing; scipy.test('full')
gives:
>>> scipy.test('full')
Running unit tests for scipy
NumPy version 1.10.0.dev0+075cc98
NumPy relaxed strides checking option: False
NumPy is installed in /home/larsoner/.local/lib/python2.7/site-packages/numpy
SciPy version 0.17.0rc1
SciPy is installed in /home/larsoner/.local/lib/python2.7/site-packages/scipy
Python version 2.7.10 (default, Oct 14 2015, 16:09:02) [GCC 5.2.1 20151010]
nose version 1.3.6
...
======================================================================
FAIL: test_lorentz (test_odr.TestODR)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/home/larsoner/.local/lib/python2.7/site-packages/scipy/odr/tests/test_odr.py", line 293, in test_lorentz
3.7798193600109009e+00]),
File "/home/larsoner/.local/lib/python2.7/site-packages/numpy/testing/utils.py", line 892, in assert_array_almost_equal
precision=decimal)
File "/home/larsoner/.local/lib/python2.7/site-packages/numpy/testing/utils.py", line 713, in assert_array_compare
raise AssertionError(msg)
AssertionError:
Arrays are not almost equal to 6 decimals
(mismatch 100.0%)
x: array([ 1.000000e+03, 1.000000e-01, 3.800000e+00])
y: array([ 1.430678e+03, 1.339051e-01, 3.779819e+00])
======================================================================
FAIL: test_multi (test_odr.TestODR)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/home/larsoner/.local/lib/python2.7/site-packages/scipy/odr/tests/test_odr.py", line 190, in test_multi
0.5101147161764654, 0.5173902330489161]),
File "/home/larsoner/.local/lib/python2.7/site-packages/numpy/testing/utils.py", line 892, in assert_array_almost_equal
precision=decimal)
File "/home/larsoner/.local/lib/python2.7/site-packages/numpy/testing/utils.py", line 713, in assert_array_compare
raise AssertionError(msg)
AssertionError:
Arrays are not almost equal to 6 decimals
(mismatch 100.0%)
x: array([ 4. , 2. , 7. , 0.4, 0.5])
y: array([ 4.379988, 2.433306, 8.002885, 0.510115, 0.51739 ])
======================================================================
FAIL: test_pearson (test_odr.TestODR)
----------------------------------------------------------------------
Traceback (most recent call last):
File "/home/larsoner/.local/lib/python2.7/site-packages/scipy/odr/tests/test_odr.py", line 236, in test_pearson
np.array([5.4767400299231674, -0.4796082367610305]),
File "/home/larsoner/.local/lib/python2.7/site-packages/numpy/testing/utils.py", line 892, in assert_array_almost_equal
precision=decimal)
File "/home/larsoner/.local/lib/python2.7/site-packages/numpy/testing/utils.py", line 713, in assert_array_compare
raise AssertionError(msg)
AssertionError:
Arrays are not almost equal to 6 decimals
(mismatch 100.0%)
x: array([ 1., 1.])
y: array([ 5.47674 , -0.479608])
----------------------------------------------------------------------
Ran 21565 tests in 1190.894s
FAILED (KNOWNFAIL=130, SKIP=1811, failures=3)
<nose.result.TextTestResult run=21565 errors=0 failures=3>
>>>
I can also try with latest numpy
master, but I figured we should try to clear up the 1.10
failures to see if that gets everything working first.
About this issue
- Original URL
- State: closed
- Created 9 years ago
- Reactions: 1
- Comments: 20 (20 by maintainers)
I’d also try to downgrade numpy to 1.6.2 or 1.7.2: it could be due to some recent tightening in numpy.
It’s too easy for me to say “I would” when I’m not doing the work, though. So I’d rather say thank you for testing it! 24.12.2015 0:52 пользователь “Eric Larson” notifications@github.com написал:
ordqz passes, yay! 😃
That’d be great. A monthly cron job?