detectron2: Error on run demo.py for Panoptic-DeepLab

Hello,

I tested the projet “Panoptic-DeepLab” by using demo.py (changed “import add_panoptic_deeplab_config, setting config” ) but I got error like below. ------------------------ log ---------------------------------------------------------------------- sem_seg_head.predictor.{bias, weight} 0%| | 0/1 [00:00<?, ?it/s] Traceback (most recent call last): File “demopan.py”, line 92, in <module> predictions, visualized_output = demo.run_on_image(img) File “/home/appuser/detectron2/demo/predictor.py”, line 48, in run_on_image predictions = self.predictor(image) File “/home/appuser/detectron2/detectron2/engine/defaults.py”, line 217, in call predictions = self.model([inputs])[0] File “/home/appuser/.local/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 550, in call result = self.forward(*input, **kwargs) File “/home/appuser/detectron2/projects/Panoptic-DeepLab/panoptic_deeplab/panoptic_seg.py”, line 104, in forward sem_seg_results, sem_seg_losses = self.sem_seg_head(features, targets, weights) File “/home/appuser/.local/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 550, in call result = self.forward(*input, **kwargs) File “/home/appuser/detectron2/projects/Panoptic-DeepLab/panoptic_deeplab/panoptic_seg.py”, line 301, in forward y = self.layers(features) File “/home/appuser/detectron2/projects/Panoptic-DeepLab/panoptic_deeplab/panoptic_seg.py”, line 312, in layers y = super().layers(features) File “/home/appuser/detectron2/projects/DeepLab/deeplab/semantic_seg.py”, line 221, in layers proj_x = self.decoder[f]“project_conv” File “/home/appuser/.local/lib/python3.6/site-packages/torch/nn/modules/module.py”, line 550, in call result = self.forward(*input, **kwargs) File “/home/appuser/detectron2/detectron2/layers/aspp.py”, line 114, in forward “Input size: {} pool_kernel_size: {}”.format(size, self.pool_kernel_size) ValueError: pool_kernel_size must be divisible by the shape of inputs. Input size: torch.Size([64, 114]) pool_kernel_size: (32, 64) …

About this issue

  • Original URL
  • State: closed
  • Created 4 years ago
  • Comments: 16 (7 by maintainers)

Most upvoted comments

@charlescho64 @soldierofhell

I tested with some random images online and could not reproduce your issue. This image below is not a Cityscapes image and Panoptic-DeepLab gives reasonable predictions.

The command I’m using: python demo/demo.py --config-file projects/Panoptic-DeepLab/configs/Cityscapes-PanopticSegmentation/panoptic_deeplab_R_52_os16_mg124_poly_90k_bs32_crop_512_1024_dsconv.yaml --input output/8-Figure1-1.png --output output/demo --opts MODEL.WEIGHTS models/model_final_23d03a.pkl

Note that I did not set INPUT.CROP.ENABLED False, instead I uncommented these lines in ASPP:

I haven’t tried setting INPUT.CROP.ENABLED False. But Cityscapes is a dataset with high-resolution images, so I’m not sure if the model generalizes well to low-resolution inputs.

https://github.com/facebookresearch/detectron2/blob/f71d8458e7fb9a45bf46518e8371bef5a8afb93e/detectron2/layers/aspp.py#L131-L136

8-Figure1-1 demo

I further tested with COCO pre-trained model, and it also works

demo