tensorflow: ValueError: Could not find matching function to call loaded from the SavedModel.
System information
- Have I written custom code (as opposed to using a stock example script provided in TensorFlow):
- OS Platform and Distribution : Windows 10
- TensorFlow installed from: pip, tf 2.1.0, cpu
- Python version: 3.7.4
build a simple network
import tensorflow as tf
from tensorflow.keras import layers
class Model():
def __init__(self):
self.build_model()
def build_model(self):
input1 = layers.Input(shape=(5,))
input2 = layers.Input(shape=(5,))
out1 = layers.Dense(1)(input1)
out2 = layers.Dense(1)(input2)
out = out1 - out2
out = tf.nn.sigmoid(out)
self.model = tf.keras.Model(inputs=[input1, input2], outputs=out)
model = Model()
s1 = "exp\\model"
model.model.save(s1)
model2 = tf.keras.models.load_model(s1)
Test Code
model = Model()
s1 = "exp\\model"
model.model.save(s1)
model2 = tf.keras.models.load_model(s1)
Error Info
Traceback (most recent call last):
File "e:\workspace\work\Study\pytorch_demos\demo5.py", line 22, in <module>
model2 = tf.keras.models.load_model(s1)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\saving\save.py", line 150, in load_model
return saved_model_load.load(filepath, compile)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\saving\saved_model\load.py", line 89, in load
model = tf_load.load_internal(path, loader_cls=KerasObjectLoader)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\saved_model\load.py", line 552, in load_internal
export_dir)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\saving\saved_model\load.py", line 119, in __init__
self._finalize()
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\saving\saved_model\load.py", line 157, in _finalize
created_layers={layer.name: layer for layer in node.layers})
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 1903, in reconstruct_from_config
process_node(layer, node_data)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 1851, in process_node
output_tensors = layer(input_tensors, **kwargs)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 773, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\keras\saving\saved_model\utils.py", line 59, in return_outputs_and_add_losses
outputs, losses = fn(inputs, *args, **kwargs)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\def_function.py", line 568, in __call__
result = self._call(*args, **kwds)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\def_function.py", line 615, in _call
self._initialize(args, kwds, add_initializers_to=initializers)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\def_function.py", line 497, in _initialize
*args, **kwds))
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\function.py", line 2389, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\function.py", line 2703, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\function.py", line 2593, in _create_graph_function
capture_by_value=self._capture_by_value),
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\framework\func_graph.py", line 978, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\eager\def_function.py", line 439, in wrapped_fn
return weak_wrapped_fn().__wrapped__(*args, **kwds)
File "C:\Users\Administrator\Anaconda3\Lib\site-packages\tensorflow_core\python\saved_model\function_deserialization.py", line 262, in restored_function_body
"\n\n".join(signature_descriptions)))
ValueError: Could not find matching function to call loaded from the SavedModel. Got:
Positional arguments (1 total):
* Tensor("inputs:0", shape=(None, 1), dtype=float32)
Keyword arguments: {}
Expected these arguments to match one of the following 1 option(s):
Option 1:
Positional arguments (1 total):
* [TensorSpec(shape=(None, 1), dtype=tf.float32, name='inputs/0')]
Keyword arguments: {}
But removing the line will not cause the error
# Correct if not using this line
out = tf.nn.sigmoid(out)
The error is caused when the model is loaded from savedModel file. Model building process is correct.
About this issue
- Original URL
- State: closed
- Created 4 years ago
- Comments: 24 (1 by maintainers)
Seeing similar error in 2.4.0. Not at load time, but when calling model.predict(ds) or modle.predict_step()
code that works with model just after training fails with this exception after save() and load()
I have the same bug in my code for Tensorflow 2.3 as installed with Conda. The same code for Tensorflow-gpu 2.2.0 installed with Conda produces an index error related to tf.gather_nd operations.
I’m seeing similar issue in 2.2.0 version. The difference is that if I don’t touch anything, loaded model works. But if I change input data by removing certain rows from df, then it reports this error. Shouldn’t saved model independent of input data?