tensorflow: [tf.keras] Stateful Metrics assorted errors.

I will break this issue down into several code snippets each displaying a different error. @fchollet. In total 3 issues. All of these issues are only relevant to tf.keras implementation. The keras implementation works as intended.

System information

  • Have I written custom code (as opposed to using a stock example script provided in TensorFlow): Yes
  • OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 16.04
  • TensorFlow installed from (source or binary): binary.
  • TensorFlow version (use command below): 1.9.0
  • Python version: 3.6.5
  • Bazel version (if compiling from source): n/a
  • GCC/Compiler version (if compiling from source): n/a
  • CUDA/cuDNN version: n/a
  • GPU model and memory: n/a
  • Exact command to reproduce: n/a

Problem 1

Issues with multi-input/multi-output and batch averaging. This happens for both train and validation metrics.

Source code/logs

import tensorflow as tf

from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense, UpSampling2D


class BatchCounter(tf.keras.layers.Layer):

        def __init__(self, name='batch_counter', **kwargs):
            super(BatchCounter, self).__init__(name=name, **kwargs)
            self.stateful = True
            self.batches = tf.keras.backend.variable(value=0, dtype='int32')

        def reset_states(self):
            tf.keras.backend.set_value(self.batches, 0)

        def __call__(self, y_true, y_pred):
            updates = [tf.keras.backend.update_add(self.batches, tf.keras.backend.variable(value=1, dtype='int32'))]
            self.add_update(updates)
            return self.batches


batch_size = 100
num_classes = 10
epochs = 1

# input image dimensions
img_rows, img_cols = 28, 28

# Data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1).astype('float32') / 255
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1).astype('float32') / 255
y_train = tf.keras.utils.to_categorical(y_train, num_classes)
y_test = tf.keras.utils.to_categorical(y_test, num_classes)

# Convolutional Encoder
input_img = Input(shape=(img_rows, img_cols, 1))
conv_1 = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img)
pool_1 = MaxPooling2D((2, 2), padding='same')(conv_1)
conv_2 = Conv2D(8, (3, 3), activation='relu', padding='same')(pool_1)
pool_2 = MaxPooling2D((2, 2), padding='same')(conv_2)
conv_3 = Conv2D(8, (3, 3), activation='relu', padding='same')(pool_2)
encoded= MaxPooling2D((2, 2), padding='same')(conv_3)

# Classification
flatten = Flatten()(encoded)
fc = Dense(128, activation='relu')(flatten)
softmax = Dense(num_classes, activation='softmax', name='classification')(fc)

# Decoder
conv_4 = Conv2D(8, (3, 3), activation='relu', padding='same')(encoded)
up_1 = UpSampling2D((2, 2))(conv_4)
conv_5 = Conv2D(8, (3, 3), activation='relu', padding='same')(up_1)
up_2 = UpSampling2D((2, 2))(conv_5)
conv_6 = Conv2D(16, (3, 3), activation='relu')(up_2)
up_3 = UpSampling2D((2, 2))(conv_6)
decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same', name='autoencoder')(up_3)

model = Model(inputs=input_img, outputs=[softmax, decoded])

model.compile(loss={'classification': 'categorical_crossentropy',
                    'autoencoder': 'binary_crossentropy'},
              loss_weights={'classification': 1.0,
                            'autoencoder': 0.5},
              optimizer='adam',
              metrics={'classification': 'accuracy', 'autoencoder': BatchCounter()})

history = model.fit(x_train,
          {'classification': y_train, 'autoencoder': x_train},
          batch_size=batch_size,
          epochs=epochs,
          validation_data= (x_test, {'classification': y_test, 'autoencoder': x_test}),
          verbose=1)
Epoch 1/1
60000/60000 [==============================] - 41s 677us/step - loss: 0.5086 - classification_loss: 0.4051 - autoencoder_loss: 0.2069 - classification_acc: 0.8755 - autoencoder_batch_counter: 299.7983 - val_loss: 0.2001 - val_classification_loss: 0.1242 - val_autoencoder_loss: 0.1518 - val_classification_acc: 0.9596 - val_autoencoder_batch_counter: 50.1000

autoencoder_batch_counter & val_autoencoder_batch_counter should always be (600, 100) respectively. These metrics are batch averaged. This does not happen in the Keras implementation.

About this issue

  • Original URL
  • State: closed
  • Created 6 years ago
  • Comments: 17 (7 by maintainers)

Commits related to this issue

Most upvoted comments

@pavithrasv Do you want some help?

I’m very keen on using Stateful Metrics for production.