tensorflow: Error converting the model to TF Lite
System information
- Have I written custom code (as opposed to using a stock example script provided in TensorFlow): yes
- OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Ubuntu 16.04.4
- TensorFlow installed from (source or binary): source
- TensorFlow version (use command below): r1.6 commit: cbc658095ae228f2f557af47e4901d552573aa15
- Python version: 3.5.2
- Bazel version (if compiling from source): 0.11.1
- GCC/Compiler version (if compiling from source): gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.9)
- CUDA/cuDNN version: N/A (build without support CUDA)
- GPU model and memory: N/A (build without support CUDA)
- Exact command to reproduce:
Describe the problem
Trained model, successfully froze, it works on the tensorflow android, using TensorFlowInferenceInterface. I try to convert this into a TF Lite format, but I get an error.
Source code / logs
bazel-bin/tensorflow/contrib/lite/toco/toco \
--input_file=./test_model/frozen_graph.pb \
--input_format=TENSORFLOW_GRAPHDEF \
--output_file=./test_model/unet.tflite \
--output_format=TFLITE \
--input_array='input' \
--input_data_type=FLOAT \
--input_shape=2,192,320,1 \
--inference_type=FLOAT \
--inference_input_type=FLOAT \
--output_array='final/Sigmoid' \
--v=1
2018-03-13 21:07:12.711948: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before Removing unused ops: 282 operators, 479 arrays (0 quantized)
2018-03-13 21:07:12.716274: I tensorflow/contrib/lite/toco/graph_transformations/graph_transformations.cc:39] Before general graph transformations: 282 operators, 479 arrays (0 quantized)
2018-03-13 21:07:12.716893: F tensorflow/contrib/lite/toco/graph_transformations/resolve_batch_normalization.cc:86] Check failed: mean_shape.dims() == multiplier_shape.dims()
Aborted (core dumped)
About this issue
- Original URL
- State: closed
- Created 6 years ago
- Reactions: 10
- Comments: 23 (9 by maintainers)
You should not use graph.pbtxt(produced when training) to froze graph. You should use a eval.pbtxt to frozen_graph. Just like ziped files (each file contains a eval.pbtxt)in https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet_v1.md
frozen_graph.zip Here is an example of a frozen graph