pyrobolearn: Not able to replicate the force control task with UR5 robot
I have seen Force_control_example.py with the Kuka-IIWa robot, which is working perfectly fine. But then I tried to implement the same with the UR5 robot, then it is not able to do the force tracking. Can you please let me know, what I am doing wrong here. Is it an issue with M/D/K parameter tunning?
Code:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
The task is to track the force along z axis (vertical to the table) by employing admittance control, meanwhile tracking
a circle trajectory on the xy plane. And the end-effector's target position is visualized by a sphere.
Reference:
[1] SONG, Peng; YU, Yueqing; ZHANG, Xuping. A tutorial survey and comparison of impedance control on robotic manipulation
. Robotica, 2019, 37.5: 801-836.
"""
import numpy as np
from itertools import count
from pyrobolearn.simulators import Bullet
from pyrobolearn.worlds import BasicWorld
from pyrobolearn.robots import Body, sensors, UR10, UR5
from pyrobolearn.utils.transformation import *
from pyrobolearn.utils.plotting.end_effector_realtime_FT_plot import EeFtRealTimePlot
from threading import Thread
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TkAgg')
# Real-time plot the End-effector force and torque
def plotting_thread(plot):
if not isinstance(plot, EeFtRealTimePlot):
raise TypeError("Expecting to plot type is CartesianRealTimePlot, not ""{}".format(plot))
while True:
plot.update()
# Manipulate the whole process
# The sphere is used to visualize the reference trajectory, So I creat the sphere trajectory as the reference
def manipulator_thread(world, robot, sphere, FT_sensor):
"""
First step: is to arrive the initial position
"""
for t in count():
# move sphere
# sphere.position = np.array([0.36, 0, 0.8])
sphere.position = np.array([0.5, 0.1, 0.94])
# get current end-effector position and velocity in the task/operational space
x = robot.get_link_world_positions(link_id)
dx = robot.get_link_world_linear_velocities(link_id)
o = robot.get_link_world_orientations(link_id)
do = robot.get_link_world_angular_velocities(link_id)
# Get joint positions
q = robot.get_joint_positions()
# Get linear jacobian
if robot.has_floating_base():
J = robot.get_jacobian(link_id, q=q)[:, qIdx + 6]
else:
J = robot.get_jacobian(link_id, q=q)[:, qIdx]
# Pseudo-inverse: \hat{J} = J^T (JJ^T + k^2 I)^{-1}
Jp = robot.get_damped_least_squares_inverse(J, damping)
dv = kp * (sphere.position - x) - kd * dx
dw = kp * quaternion_error(sphere.orientation, o) - kd * do
# evaluate damped-least-squares IK
dq = Jp.dot(np.hstack((dv, dw)))
# set joint positions
q = q[qIdx] + dq * dt
robot.set_joint_positions(q, joint_ids=joint_ids)
if t > 1000:
break
# step in simulation
world.step(sleep_dt=dt)
"""
Second step: From the initial pose, Move vertically downward
until end-effector touches the desktop with a force of 10N
"""
for t in count():
Fz_desired = 5 # the threshold of the contact force with table
# move sphere
sphere.position = np.array([0.5, 0.1, 0.94-0.0005*t])
# get current end-effector position and velocity in the task/operational space
x = robot.get_link_world_positions(link_id)
dx = robot.get_link_world_linear_velocities(link_id)
o = robot.get_link_world_orientations(link_id)
do = robot.get_link_world_angular_velocities(link_id)
# Get joint positions
q = robot.get_joint_positions()
# Get linear jacobian
if robot.has_floating_base():
J = robot.get_jacobian(link_id, q=q)[:, qIdx + 6]
else:
J = robot.get_jacobian(link_id, q=q)[:, qIdx]
# Pseudo-inverse: \hat{J} = J^T (JJ^T + k^2 I)^{-1}
Jp = robot.get_damped_least_squares_inverse(J, damping)
dv = kp * (sphere.position - x) - kd * dx
dw = kp * quaternion_error(sphere.orientation, o) - kd * do
# evaluate damped-least-squares IK
dq = Jp.dot(np.hstack((dv, dw)))
# set joint positions
# robot.set_joint_velocities(dq, joint_ids=joint_ids)
q = q[qIdx] + dq * dt
robot.set_joint_positions(q, joint_ids=joint_ids)
print('force:', FT_sensor.sense()[2])
if FT_sensor.sense() is not None:
if FT_sensor.sense()[2] > Fz_desired:
print('reached desired F')
break
# step in simulation
world.step(sleep_dt=dt)
sp_z = []
num = []
detx = np.array([0.0, 0.0, 0.0])
"""
Third step to keep the target force along z axis(vertical to the table),
and complete circular motion trajectory on plane xy
"""
circle_center = np.array([0.5, 0.1]) # the center of the trajectory
for t in count():
Fz_desired = 5 # desired force
# move sphere
if t == 0:
z = robot.get_link_world_positions(link_id)[2]
sphere.position = np.array([circle_center[0] - r * np.sin(w * t + np.pi / 2), circle_center[1] + r * np.cos(w * t + np.pi / 2), z])
# get current end-effector position and velocity in the task/operational space
x = robot.get_link_world_positions(link_id)
dx = robot.get_link_world_linear_velocities(link_id)
o = robot.get_link_world_orientations(link_id)
do = robot.get_link_world_angular_velocities(link_id)
# Get joint positions
q = robot.get_joint_positions()
# Get linear jacobian
if robot.has_floating_base():
J = robot.get_jacobian(link_id, q=q)[:, qIdx + 6]
else:
J = robot.get_jacobian(link_id, q=q)[:, qIdx]
# Pseudo-inverse: \hat{J} = J^T (JJ^T + k^2 I)^{-1}
Jp = robot.get_damped_least_squares_inverse(J, damping)
# Apply the admittance control
Fz_current = FT_sensor.sense()[2] # record the current Fz
print('Fz: ', Fz_current)
Fz_error = Fz_current - Fz_desired # record the current error
# set the M\D\K parameters by heuristic method, these parameters may have a good result
# M = 1
# D = 9500
# K = 500000
M = 0.2
D = 4250
K = 100000
# Refer the formula (33) in this article [1]
# the formula is theta_x(k) = Fc(k)*Ts^2+Bd*Ts*theta_x(k-1)+Md*(2*theta_x(k-1)-theta_x(k-2))/(Md+Bd*Ts+Kd*Ts^2)
numerator = Fz_error * np.square(dt) + D * dt * detx[1] + M * (2 * detx[1] - detx[2])
denominator = M + D*dt + K*np.square(dt)
detx_ = numerator / denominator
print (detx_)
detx[2] = detx[1]
detx[1] = detx[0]
detx[0] = detx_
zzz = sphere.position[2] + detx[0]
# circle_center the the centre of the circle trajectory on the table
sphere.position = np.array([circle_center[0] - r * np.sin(w * t + np.pi / 2), circle_center[1] + r * np.cos(w * t + np.pi / 2), zzz])
dv = kp * (sphere.position - x) - kd * dx # compute the other direction tracking error term
sp_z.append(sphere.position[2])
num.append(t)
dw = kp * quaternion_error(sphere.orientation, o) - kd * do
# evaluate damped-least-squares IK
dq = Jp.dot(np.hstack((dv, dw)))
# set joint positions
q = q[qIdx] + dq * dt
robot.set_joint_positions(q, joint_ids=joint_ids)
# print(Fz_error, dv[2])
if t == 2000:
break
# step in simulation
world.step(sleep_dt=dt)
plt.plot(num, sp_z) # plot the position on the z axis
plt.xlabel("timesteps")
plt.ylabel("vertical position")
plt.title("The z axis position during the task")
plt.show()
if __name__=='__main__':
# Create simulator
sim = Bullet()
# create world
world = BasicWorld(sim)
# flag : 0 # PI control
flag = 0
# create robot
robot = UR5(sim, position=[0,0,0.5])
# robot = 'ur5'
robot.print_info()
world.load_robot(robot)
world.load_table(position=np.array([1, 0., 0.]), orientation=np.array([0.0, 0.0, 0.0, 1.0]))
# define useful variables for IK
dt = 1. / 240
link_id = robot.get_end_effector_ids(end_effector=0)
print('link_id:',link_id)
joint_ids = robot.joints # actuated joint
damping = 0.01 # for damped-least-squares IK
wrt_link_id = -1 # robot.get_link_ids('iiwa_link_1')
qIdx = robot.get_q_indices(joint_ids)
print('qidx:', qIdx)
# define gains
kp = 500 # 5 if velocity control, 50 if position control
kd = 5 # 2*np.sqrt(kp)
# create sphere to follow
sphere = world.load_visual_sphere(position=np.array([0.5, 0., 0.5]), radius=0.05, color=(1, 0, 0, 0.5))
sphere = Body(sim, body_id=sphere)
# set initial joint p
# Positions (based on the position of the sphere at [0.5, 0, 1])
robot.reset_joint_states(q=[0.0, -1.57, 1.57, -1.57, -1.57, -1.57])
# define amplitude and angular velocity when moving the sphere
w = 0.01
r = 0.1
# I set the reference orientation to a constant
sphere.orientation = np.array([-0.49940256, 0.5001992, 0.50019888, 0.50019888])
FT_sensor = sensors.JointForceTorqueSensor(sim, body_id=robot.id, joint_ids=5)
# The plotting handle
plot = EeFtRealTimePlot(robot, sensor=FT_sensor, forcex=True, forcey=True, forcez=True,
torquex=True, torquey=True, torquez=True, num_point=1000, ticks=24)
# FT_ = np.zeros(6)
plot_t = Thread(target=plotting_thread, args=[plot], name='plotting task')
manipulator_t = Thread(target=manipulator_thread, args=(world, robot, sphere, FT_sensor), name='manipulator task')
thread_pools = [plot_t, manipulator_t]
for thread in thread_pools:
thread.start()
for thread in thread_pools:
thread.join()
About this issue
- Original URL
- State: closed
- Created 4 years ago
- Comments: 16 (6 by maintainers)
@TFLQW I have been able to solve the issue by changing the object (table). Thank you so much for your help with this.