keras-yolo3: retrain model with VOC dataset, but can't find box in yolo.py

Thank you for this great model.

I’m new in yolo, I retrained this model with VOC dataset and pretrained darknet53_weights. After 30 epoches, I got a trained_weights.h5 with about 39.0 loss. In my training, I modified config in train.py to auto save model in h5, as follow:

    checkpoint = ModelCheckpoint(log_dir + "ep{epoch:03d}-loss{loss:.3f}-val_loss{val_loss:.3f}.h5",
        monitor='val_loss', save_weights_only=False, save_best_only=True)

So I just modified model_path and classes_path in yolo.py. But using python yolo.py, my model can’t find any box in my test car picture(yolo.h5 can find cars)

...
model_data/trained_weights.h5 model, anchors, and classes loaded.
Input image filename:/home/cooli7wa/Desktop/car/1.jpg
(416, 416, 3)
Found 0 boxes for img
2.1818076580530033

After this, I modified score from 0.3 to 0.0, to see all boxes.

Found 400 boxes for img
tvmonitor 0.24 (1078, 716) (1440, 1030)
tvmonitor 0.24 (854, 52) (1249, 365)
tvmonitor 0.24 (565, 0) (1096, 441)
tvmonitor 0.24 (1010, 411) (1440, 1080)
tvmonitor 0.24 (300, 164) (696, 475)
tvmonitor 0.24 (233, 0) (763, 441)
tvmonitor 0.24 (743, 605) (1139, 919)
tvmonitor 0.24 (632, 716) (1029, 1029)
tvmonitor 0.24 (856, 717) (1248, 1030)
tvmonitor 0.24 (852, 937) (1251, 1080)
tvmonitor 0.24 (187, 938) (587, 1080)
tvmonitor 0.24 (564, 524) (1097, 1080)
tvmonitor 0.24 (1075, 939) (1440, 1080)
tvmonitor 0.24 (299, 272) (696, 587)
tvmonitor 0.24 (411, 52) (806, 365)
tvmonitor 0.24 (522, 162) (918, 476)
tvmonitor 0.24 (744, 495) (1138, 808)
tvmonitor 0.24 (630, 938) (1030, 1080)
tvmonitor 0.25 (190, 53) (584, 365)
tvmonitor 0.26 (79, 162) (473, 477)
train 0.24 (854, 52) (1249, 365)
train 0.24 (564, 415) (1097, 1080)
train 0.24 (79, 275) (472, 586)
train 0.24 (852, 828) (1251, 1080)
train 0.24 (786, 0) (1318, 666)
train 0.24 (343, 415) (875, 1080)
train 0.24 (787, 529) (1317, 1080)
train 0.24 (119, 750) (655, 1080)
train 0.24 (522, 162) (918, 476)
train 0.24 (854, 605) (1248, 920)
train 0.24 (563, 749) (1099, 1080)
train 0.24 (856, 717) (1248, 1030)
train 0.24 (79, 162) (473, 477)
train 0.24 (455, 195) (984, 886)
train 0.24 (342, 0) (875, 554)
train 0.24 (80, 494) (471, 808)
train 0.24 (854, 163) (1250, 476)
train 0.24 (0, 83) (431, 776)
train 0.24 (676, 303) (1206, 998)
train 0.25 (14, 417) (539, 1080)
sofa 0.25 (521, 606) (918, 919)
sofa 0.25 (565, 0) (1096, 441)
sofa 0.25 (0, 163) (360, 477)
sofa 0.25 (232, 195) (764, 884)
sofa 0.25 (565, 304) (1095, 998)
sofa 0.25 (233, 0) (763, 441)
sofa 0.25 (0, 0) (319, 671)
sofa 0.25 (1011, 524) (1440, 1080)
sofa 0.25 (676, 194) (1206, 886)
sofa 0.25 (898, 0) (1427, 554)
sofa 0.25 (232, 639) (765, 1080)
sofa 0.25 (523, 826) (915, 1080)
sofa 0.25 (342, 0) (875, 554)
sofa 0.25 (455, 195) (984, 886)
sofa 0.25 (452, 640) (987, 1080)
sofa 0.25 (9, 644) (544, 1080)
sofa 0.25 (0, 0) (429, 445)
sofa 0.25 (784, 642) (1321, 1080)
sofa 0.26 (120, 0) (655, 549)
sofa 0.26 (78, 826) (474, 1080)
sheep 0.25 (521, 383) (918, 699)
sheep 0.25 (898, 0) (1427, 554)
sheep 0.25 (300, 383) (695, 698)
sheep 0.25 (522, 162) (918, 476)
sheep 0.25 (852, 828) (1251, 1080)
sheep 0.25 (521, 273) (918, 587)
sheep 0.25 (0, 749) (429, 1080)
sheep 0.25 (523, 495) (916, 809)
sheep 0.26 (455, 195) (984, 886)
sheep 0.26 (301, 717) (696, 1029)
sheep 0.26 (963, 162) (1362, 476)
sheep 0.26 (0, 0) (430, 667)
sheep 0.26 (744, 495) (1138, 808)
sheep 0.26 (854, 605) (1248, 920)
sheep 0.26 (299, 272) (696, 587)
sheep 0.26 (140, 350) (246, 563)
sheep 0.26 (740, 938) (1142, 1080)
sheep 0.26 (232, 195) (764, 884)
sheep 0.26 (0, 163) (360, 477)
sheep 0.26 (521, 606) (918, 919)
pottedplant 0.24 (786, 82) (1317, 777)
pottedplant 0.24 (1076, 606) (1440, 919)
pottedplant 0.24 (233, 0) (763, 441)
pottedplant 0.24 (675, 0) (1208, 554)
pottedplant 0.24 (676, 303) (1206, 998)
pottedplant 0.24 (13, 530) (540, 1080)
pottedplant 0.24 (452, 415) (987, 1080)
pottedplant 0.24 (12, 0) (540, 440)
pottedplant 0.24 (1010, 411) (1440, 1080)
pottedplant 0.24 (898, 0) (1428, 666)
pottedplant 0.24 (229, 84) (767, 774)
pottedplant 0.24 (0, 637) (427, 1080)
pottedplant 0.24 (564, 524) (1097, 1080)
pottedplant 0.24 (743, 605) (1139, 919)
pottedplant 0.24 (0, 0) (429, 330)
pottedplant 0.24 (565, 194) (1095, 886)
pottedplant 0.24 (0, 83) (431, 776)
pottedplant 0.25 (124, 194) (652, 885)
pottedplant 0.25 (344, 192) (873, 888)
pottedplant 0.25 (235, 526) (762, 1080)
person 0.26 (343, 415) (875, 1080)
person 0.26 (343, 0) (874, 440)
person 0.26 (232, 305) (764, 996)
person 0.26 (966, 494) (1361, 809)
person 0.26 (522, 162) (918, 476)
person 0.26 (854, 0) (1249, 253)
person 0.26 (898, 0) (1427, 554)
person 0.26 (454, 0) (986, 555)
person 0.26 (565, 0) (1096, 441)
person 0.26 (1145, 188) (1348, 614)
person 0.26 (896, 303) (1429, 998)
person 0.26 (78, 826) (474, 1080)
person 0.26 (457, 303) (983, 999)
person 0.27 (121, 418) (653, 1080)
person 0.27 (675, 0) (1208, 554)
person 0.27 (120, 0) (655, 549)
person 0.27 (676, 194) (1206, 886)
person 0.27 (12, 0) (540, 440)
person 0.27 (232, 0) (764, 663)
person 0.27 (787, 0) (1317, 440)
motorbike 0.24 (898, 0) (1427, 554)
motorbike 0.24 (966, 606) (1360, 920)
motorbike 0.24 (854, 163) (1250, 476)
motorbike 0.24 (343, 415) (875, 1080)
motorbike 0.24 (521, 52) (918, 366)
motorbike 0.24 (676, 303) (1206, 998)
motorbike 0.24 (412, 495) (806, 809)
motorbike 0.24 (1008, 639) (1440, 1080)
motorbike 0.24 (854, 52) (1249, 365)
motorbike 0.25 (232, 305) (764, 996)
motorbike 0.25 (0, 526) (428, 1080)
motorbike 0.25 (1077, 53) (1440, 365)
motorbike 0.25 (121, 530) (653, 1080)
motorbike 0.25 (455, 195) (984, 886)
motorbike 0.25 (522, 162) (918, 476)
motorbike 0.25 (521, 606) (918, 919)
motorbike 0.25 (454, 0) (986, 555)
motorbike 0.25 (14, 417) (539, 1080)
motorbike 0.25 (12, 0) (540, 553)
motorbike 0.26 (0, 83) (431, 776)
horse 0.25 (411, 52) (806, 365)
horse 0.25 (1010, 411) (1440, 1080)
horse 0.25 (854, 163) (1250, 476)
horse 0.25 (854, 52) (1249, 365)
horse 0.25 (522, 162) (918, 476)
horse 0.25 (0, 939) (364, 1080)
horse 0.25 (854, 0) (1249, 253)
horse 0.25 (851, 273) (1251, 587)
horse 0.25 (232, 305) (764, 996)
horse 0.25 (521, 273) (918, 587)
horse 0.25 (675, 0) (1208, 554)
horse 0.25 (452, 415) (987, 1080)
horse 0.25 (523, 495) (916, 809)
horse 0.25 (521, 383) (918, 699)
horse 0.25 (675, 413) (1207, 1080)
horse 0.25 (786, 0) (1318, 666)
horse 0.25 (344, 192) (873, 888)
horse 0.26 (453, 0) (986, 666)
horse 0.26 (14, 417) (539, 1080)
horse 0.26 (565, 194) (1095, 886)
dog 0.26 (674, 749) (1209, 1080)
dog 0.26 (631, 383) (1030, 699)
dog 0.26 (963, 937) (1362, 1080)
dog 0.26 (742, 162) (1139, 477)
dog 0.26 (676, 194) (1206, 886)
dog 0.26 (409, 937) (809, 1080)
dog 0.27 (744, 495) (1138, 808)
dog 0.27 (786, 82) (1317, 777)
dog 0.27 (78, 52) (474, 366)
dog 0.27 (521, 606) (918, 919)
dog 0.27 (299, 53) (696, 364)
dog 0.27 (78, 826) (474, 1080)
dog 0.27 (0, 163) (360, 477)
dog 0.27 (10, 750) (543, 1080)
dog 0.27 (191, 164) (583, 476)
dog 0.27 (77, 939) (476, 1080)
dog 0.27 (341, 85) (876, 775)
dog 0.27 (740, 938) (1142, 1080)
dog 0.27 (522, 162) (918, 476)
dog 0.27 (299, 272) (696, 587)
diningtable 0.25 (563, 749) (1099, 1080)
diningtable 0.25 (742, 162) (1139, 477)
diningtable 0.25 (342, 0) (875, 554)
diningtable 0.25 (674, 82) (1208, 776)
diningtable 0.25 (10, 750) (543, 1080)
diningtable 0.25 (411, 826) (807, 1080)
diningtable 0.25 (409, 937) (809, 1080)
diningtable 0.25 (785, 0) (1319, 553)
diningtable 0.25 (300, 383) (695, 698)
diningtable 0.25 (411, 52) (806, 365)
diningtable 0.25 (854, 52) (1249, 365)
diningtable 0.25 (963, 162) (1362, 476)
diningtable 0.25 (521, 273) (918, 587)
diningtable 0.25 (301, 495) (695, 808)
diningtable 0.25 (630, 938) (1030, 1080)
diningtable 0.25 (232, 305) (764, 996)
diningtable 0.25 (521, 606) (918, 919)
diningtable 0.26 (522, 162) (918, 476)
diningtable 0.26 (77, 939) (476, 1080)
diningtable 0.26 (79, 162) (473, 477)
cow 0.25 (410, 716) (807, 1030)
cow 0.25 (565, 0) (1096, 667)
cow 0.25 (966, 494) (1361, 809)
cow 0.25 (852, 828) (1251, 1080)
cow 0.25 (411, 52) (806, 365)
cow 0.25 (676, 303) (1206, 998)
cow 0.25 (856, 717) (1248, 1030)
cow 0.25 (78, 52) (474, 366)
cow 0.25 (631, 383) (1030, 699)
cow 0.25 (1078, 716) (1440, 1030)
cow 0.25 (1076, 606) (1440, 919)
cow 0.26 (0, 0) (430, 667)
cow 0.26 (633, 162) (1027, 477)
cow 0.26 (1077, 53) (1440, 365)
cow 0.26 (854, 52) (1249, 365)
cow 0.26 (854, 163) (1250, 476)
cow 0.26 (898, 0) (1428, 666)
cow 0.26 (744, 495) (1138, 808)
cow 0.26 (854, 605) (1248, 920)
cow 0.26 (631, 607) (1029, 918)
chair 0.24 (632, 716) (1029, 1029)
chair 0.24 (411, 383) (806, 698)
chair 0.24 (301, 495) (695, 808)
chair 0.24 (854, 163) (1250, 476)
chair 0.24 (1075, 939) (1440, 1080)
chair 0.24 (1076, 606) (1440, 919)
chair 0.24 (411, 826) (807, 1080)
chair 0.25 (523, 495) (916, 809)
chair 0.25 (410, 716) (807, 1030)
chair 0.25 (744, 495) (1138, 808)
chair 0.25 (630, 938) (1030, 1080)
chair 0.25 (965, 53) (1361, 365)
chair 0.25 (745, 825) (1138, 1080)
chair 0.25 (411, 52) (806, 365)
chair 0.25 (852, 383) (1251, 698)
chair 0.25 (0, 939) (364, 1080)
chair 0.25 (854, 605) (1248, 920)
chair 0.25 (521, 606) (918, 919)
chair 0.25 (1011, 524) (1440, 1080)
chair 0.26 (966, 494) (1361, 809)
cat 0.25 (563, 749) (1099, 1080)
cat 0.25 (1077, 53) (1440, 365)
cat 0.25 (521, 383) (918, 699)
cat 0.25 (521, 0) (918, 141)
cat 0.25 (854, 605) (1248, 920)
cat 0.25 (520, 937) (919, 1080)
cat 0.25 (0, 0) (429, 445)
cat 0.25 (963, 937) (1362, 1080)
cat 0.25 (854, 52) (1249, 365)
cat 0.25 (410, 716) (807, 1030)
cat 0.25 (744, 495) (1138, 808)
cat 0.25 (522, 162) (918, 476)
cat 0.25 (521, 606) (918, 919)
cat 0.25 (852, 828) (1251, 1080)
cat 0.26 (190, 53) (584, 365)
cat 0.26 (632, 716) (1029, 1029)
cat 0.26 (740, 938) (1142, 1080)
cat 0.26 (77, 939) (476, 1080)
cat 0.26 (411, 52) (806, 365)
cat 0.26 (633, 827) (1027, 1080)
car 0.25 (565, 194) (1095, 886)
car 0.25 (232, 305) (764, 996)
car 0.25 (452, 415) (987, 1080)
car 0.26 (523, 495) (916, 809)
car 0.26 (785, 414) (1318, 1080)
car 0.26 (411, 52) (806, 365)
car 0.26 (966, 606) (1360, 920)
car 0.26 (299, 827) (697, 1080)
car 0.26 (965, 53) (1361, 365)
car 0.26 (301, 495) (695, 808)
car 0.26 (897, 191) (1428, 889)
car 0.26 (521, 606) (918, 919)
car 0.26 (80, 494) (471, 808)
car 0.26 (79, 162) (473, 477)
car 0.27 (124, 194) (652, 885)
car 0.27 (189, 275) (584, 585)
car 0.27 (76, 384) (476, 699)
car 0.28 (14, 417) (539, 1080)
car 0.28 (0, 83) (431, 776)
car 0.28 (0, 274) (364, 586)
bus 0.24 (521, 606) (918, 919)
bus 0.24 (189, 275) (584, 585)
bus 0.24 (565, 194) (1095, 886)
bus 0.24 (123, 0) (651, 442)
bus 0.24 (743, 605) (1139, 919)
bus 0.24 (189, 384) (585, 698)
bus 0.24 (854, 52) (1249, 365)
bus 0.24 (343, 415) (875, 1080)
bus 0.24 (676, 0) (1206, 666)
bus 0.24 (563, 749) (1099, 1080)
bus 0.24 (79, 162) (473, 477)
bus 0.25 (232, 305) (764, 996)
bus 0.25 (785, 0) (1319, 553)
bus 0.25 (785, 305) (1320, 997)
bus 0.25 (124, 194) (652, 885)
bus 0.25 (675, 413) (1207, 1080)
bus 0.25 (630, 938) (1030, 1080)
bus 0.25 (898, 412) (1427, 1080)
bus 0.25 (897, 80) (1428, 778)
bus 0.26 (13, 87) (539, 771)
bottle 0.25 (812, 298) (1016, 726)
bottle 0.25 (0, 0) (185, 173)
bottle 0.25 (591, 465) (795, 891)
bottle 0.25 (92, 413) (297, 832)
bottle 0.25 (916, 796) (1021, 1004)
bottle 0.25 (1090, 628) (1292, 1060)
bottle 0.25 (1138, 517) (1243, 730)
bottle 0.25 (370, 77) (572, 504)
bottle 0.25 (141, 793) (245, 1006)
bottle 0.25 (37, 298) (239, 725)
bottle 0.25 (1090, 357) (1294, 777)
bottle 0.25 (38, 133) (241, 558)
bottle 0.25 (758, 77) (960, 504)
bottle 0.25 (202, 356) (407, 779)
bottle 0.25 (258, 465) (463, 891)
bottle 0.26 (150, 469) (350, 887)
bottle 0.26 (1193, 463) (1298, 673)
bottle 0.26 (140, 350) (246, 563)
bottle 0.26 (204, 132) (406, 559)
bottle 0.27 (93, 247) (296, 666)
boat 0.23 (124, 194) (652, 885)
boat 0.23 (342, 0) (875, 554)
boat 0.23 (0, 0) (430, 667)
boat 0.23 (1117, 0) (1440, 668)
boat 0.23 (187, 497) (586, 806)
boat 0.23 (898, 412) (1427, 1080)
boat 0.23 (10, 0) (543, 329)
boat 0.23 (123, 0) (651, 442)
boat 0.23 (854, 163) (1250, 476)
boat 0.23 (1010, 0) (1440, 555)
boat 0.23 (674, 82) (1208, 776)
boat 0.23 (14, 417) (539, 1080)
boat 0.24 (785, 0) (1319, 553)
boat 0.24 (344, 192) (873, 888)
boat 0.24 (787, 192) (1317, 888)
boat 0.24 (1009, 191) (1440, 889)
boat 0.24 (565, 194) (1095, 886)
boat 0.24 (897, 80) (1428, 778)
boat 0.24 (1008, 0) (1440, 218)
boat 0.24 (13, 87) (539, 771)
bird 0.26 (0, 827) (363, 1080)
bird 0.26 (412, 495) (806, 809)
bird 0.26 (521, 52) (918, 366)
bird 0.26 (13, 0) (540, 663)
bird 0.26 (852, 828) (1251, 1080)
bird 0.26 (0, 274) (364, 586)
bird 0.26 (740, 938) (1142, 1080)
bird 0.26 (77, 939) (476, 1080)
bird 0.26 (0, 0) (362, 142)
bird 0.26 (0, 495) (362, 808)
bird 0.26 (521, 273) (918, 587)
bird 0.26 (411, 826) (807, 1080)
bird 0.26 (745, 52) (1138, 366)
bird 0.27 (631, 607) (1029, 918)
bird 0.27 (119, 87) (655, 771)
bird 0.27 (522, 162) (918, 476)
bird 0.27 (411, 604) (806, 920)
bird 0.27 (0, 382) (365, 699)
bird 0.27 (189, 275) (584, 585)
bird 0.28 (79, 162) (473, 477)
bicycle 0.25 (411, 272) (806, 587)
bicycle 0.25 (758, 77) (960, 504)
bicycle 0.25 (302, 605) (695, 918)
bicycle 0.25 (521, 606) (918, 919)
bicycle 0.25 (189, 827) (585, 1080)
bicycle 0.25 (740, 938) (1142, 1080)
bicycle 0.25 (78, 603) (473, 921)
bicycle 0.25 (411, 52) (806, 365)
bicycle 0.25 (631, 383) (1030, 699)
bicycle 0.25 (742, 162) (1139, 477)
bicycle 0.26 (0, 827) (363, 1080)
bicycle 0.26 (522, 162) (918, 476)
bicycle 0.26 (745, 52) (1138, 366)
bicycle 0.26 (523, 495) (916, 809)
bicycle 0.26 (0, 495) (362, 808)
bicycle 0.26 (744, 495) (1138, 808)
bicycle 0.26 (411, 383) (806, 698)
bicycle 0.26 (189, 384) (585, 698)
bicycle 0.26 (189, 275) (584, 585)
bicycle 0.26 (301, 495) (695, 808)
aeroplane 0.23 (631, 607) (1029, 918)
aeroplane 0.23 (1008, 639) (1440, 1080)
aeroplane 0.23 (784, 642) (1321, 1080)
aeroplane 0.23 (854, 0) (1250, 35)
aeroplane 0.23 (813, 630) (1016, 1058)
aeroplane 0.23 (13, 87) (539, 771)
aeroplane 0.23 (411, 52) (806, 365)
aeroplane 0.23 (342, 0) (875, 554)
aeroplane 0.24 (425, 576) (628, 1002)
aeroplane 0.24 (79, 0) (474, 34)
aeroplane 0.24 (1146, 741) (1347, 1080)
aeroplane 0.24 (0, 939) (364, 1080)
aeroplane 0.24 (0, 274) (364, 586)
aeroplane 0.24 (1090, 796) (1292, 1080)
aeroplane 0.24 (37, 191) (242, 612)
aeroplane 0.24 (813, 134) (1016, 558)
aeroplane 0.24 (79, 162) (473, 477)
aeroplane 0.24 (76, 384) (476, 699)
aeroplane 0.24 (189, 275) (584, 585)
aeroplane 0.25 (758, 77) (960, 504)

all class have almost the same score… Other, I found my trained_weights.h5’s size is not same as yolo.h5

-rw-rw-r--  1 cooli7wa cooli7wa 248491304 6月   4 15:33 trained_weights.h5
-rw-rw-r--  1 cooli7wa cooli7wa 248686632 6月   1 09:18 yolo.h5

Is that size ok? Or my loss too high(39.0)? I don’t know why.

This blocked me two days. Thank you for your help!

About this issue

  • Original URL
  • State: open
  • Created 6 years ago
  • Comments: 46 (2 by maintainers)

Most upvoted comments

Hi there,

I have the same problem here. Epoch 177/200 5/5 [==============================] - 14s 3s/step - loss: 11.2442 - val_loss: 10.6615

It can’t detect any bounding box.

Any suggestion, thanks.

@qqwweee Have you encountered this problem: - val_loss: nan? Epoch 2/500 576/576 [==============================] - 215s 374ms/step - loss: 1383.9500 - val_loss: nan Epoch 3/500 576/576 [==============================] - 216s 374ms/step - loss: 686.2021 - val_loss: nan Epoch 4/500 576/576 [==============================] - 217s 377ms/step - loss: 410.9110 - val_loss: nan

I retrained this model with VOC dataset After 20 epoches, I got a trained_weights.h5 with about 7.0 loss. So I just modified model_path and classes_path in yolo.py. But using python yolo.py, my model can’t find any box in my test pictures. This blocked me one month. I can’t find where the problem is. Thank you for your help!

24/24 [==============================] - 32s 1s/step - loss: 1855.2923 - val_loss: 3390728.9688 Epoch 2/100 24/24 [==============================] - 19s 775ms/step - loss: 228.4187 - val_loss: 17582.2413 Epoch 3/100 24/24 [==============================] - 19s 775ms/step - loss: 130.7130 - val_loss: 223.0762 Epoch 4/100 24/24 [==============================] - 19s 777ms/step - loss: 94.9265 - val_loss: 264.2446 Epoch 5/100 24/24 [==============================] - 19s 776ms/step - loss: 73.9083 - val_loss: 283.4447 Epoch 6/100 24/24 [==============================] - 19s 781ms/step - loss: 62.4733 - val_loss: 93.2500 Epoch 7/100 24/24 [==============================] - 19s 777ms/step - loss: 57.1280 - val_loss: 17010529.1250 Epoch 8/100 24/24 [==============================] - 19s 775ms/step - loss: 63.5084 - val_loss: 332598188.1875 Epoch 9/100 24/24 [==============================] - 19s 775ms/step - loss: 60.8199 - val_loss: 3841.8596 Epoch 10/100 24/24 [==============================] - 19s 777ms/step - loss: 46.3737 - val_loss: 416.8000 Epoch 11/100 24/24 [==============================] - 19s 775ms/step - loss: 40.0810 - val_loss: 320.2411 Epoch 12/100 24/24 [==============================] - 19s 779ms/step - loss: 38.6060 - val_loss: 34.1380 Epoch 13/100 24/24 [==============================] - 19s 782ms/step - loss: 34.4895 - val_loss: 34.1830 Epoch 14/100 24/24 [==============================] - 19s 781ms/step - loss: 31.6124 - val_loss: 30.9661 Epoch 15/100 24/24 [==============================] - 19s 777ms/step - loss: 31.2436 - val_loss: 28.4113 Epoch 16/100 24/24 [==============================] - 19s 777ms/step - loss: 29.9609 - val_loss: 29.0701 Epoch 17/100 24/24 [==============================] - 19s 775ms/step - loss: 33.9855 - val_loss: 35.7120 Epoch 18/100 24/24 [==============================] - 19s 777ms/step - loss: 29.3629 - val_loss: 26.9789 Epoch 19/100 24/24 [==============================] - 19s 777ms/step - loss: 27.5470 - val_loss: 26.0849 Epoch 20/100 24/24 [==============================] - 19s 776ms/step - loss: 26.7831 - val_loss: 27.6721 Epoch 21/100 24/24 [==============================] - 19s 776ms/step - loss: 26.0673 - val_loss: 26.0159 Epoch 22/100 24/24 [==============================] - 19s 776ms/step - loss: 25.5499 - val_loss: 25.1829 Epoch 23/100 24/24 [==============================] - 19s 778ms/step - loss: 25.3891 - val_loss: 26.1550 Epoch 24/100 24/24 [==============================] - 19s 776ms/step - loss: 25.2917 - val_loss: 24.8415 Epoch 25/100 24/24 [==============================] - 19s 777ms/step - loss: 24.5065 - val_loss: 23.9405 Epoch 26/100 24/24 [==============================] - 19s 776ms/step - loss: 24.2171 - val_loss: 29.0975 Epoch 27/100 24/24 [==============================] - 19s 776ms/step - loss: 23.7548 - val_loss: 30.1721 Epoch 28/100 24/24 [==============================] - 19s 776ms/step - loss: 23.6231 - val_loss: 23.9454 Epoch 29/100 24/24 [==============================] - 19s 778ms/step - loss: 23.2079 - val_loss: 22.7171 Epoch 30/100 24/24 [==============================] - 19s 784ms/step - loss: 22.9274 - val_loss: 22.9661 Epoch 31/100 24/24 [==============================] - 19s 776ms/step - loss: 22.9505 - val_loss: 21.9244 Epoch 32/100 24/24 [==============================] - 19s 776ms/step - loss: 22.7322 - val_loss: 22.2343 Epoch 33/100 24/24 [==============================] - 19s 776ms/step - loss: 22.0856 - val_loss: 21.9918 Epoch 34/100 24/24 [==============================] - 19s 776ms/step - loss: 22.3082 - val_loss: 22.1995 Epoch 35/100 24/24 [==============================] - 19s 778ms/step - loss: 22.1402 - val_loss: 20.6331 Epoch 36/100 24/24 [==============================] - 19s 775ms/step - loss: 21.7534 - val_loss: 21.3660 Epoch 37/100 24/24 [==============================] - 19s 775ms/step - loss: 21.5871 - val_loss: 21.8522 Epoch 38/100 24/24 [==============================] - 19s 781ms/step - loss: 21.5326 - val_loss: 24.8214 Epoch 39/100 24/24 [==============================] - 19s 777ms/step - loss: 21.3279 - val_loss: 20.7667 Epoch 40/100 24/24 [==============================] - 19s 776ms/step - loss: 21.5276 - val_loss: 19.8768 Epoch 41/100 24/24 [==============================] - 19s 774ms/step - loss: 21.3221 - val_loss: 21.4741 Epoch 42/100 24/24 [==============================] - 19s 776ms/step - loss: 20.9914 - val_loss: 21.3854 Epoch 43/100 24/24 [==============================] - 19s 776ms/step - loss: 20.4727 - val_loss: 19.5242 Epoch 44/100 24/24 [==============================] - 19s 775ms/step - loss: 20.4470 - val_loss: 20.8995 Epoch 45/100 24/24 [==============================] - 19s 774ms/step - loss: 20.6613 - val_loss: 19.2053 Epoch 46/100 24/24 [==============================] - 19s 777ms/step - loss: 20.5620 - val_loss: 29.4835 Epoch 47/100 24/24 [==============================] - 19s 776ms/step - loss: 20.3510 - val_loss: 21.1771 Epoch 48/100 24/24 [==============================] - 19s 777ms/step - loss: 20.7037 - val_loss: 21.8391 Epoch 49/100 24/24 [==============================] - 19s 774ms/step - loss: 20.2857 - val_loss: 21.5700 Epoch 50/100 24/24 [==============================] - 19s 775ms/step - loss: 19.9783 - val_loss: 19.6167 Epoch 51/100 24/24 [==============================] - 19s 775ms/step - loss: 19.7407 - val_loss: 20.4395 Epoch 52/100 24/24 [==============================] - 19s 777ms/step - loss: 19.6230 - val_loss: 18.2430 Epoch 53/100 24/24 [==============================] - 19s 776ms/step - loss: 19.9892 - val_loss: 20.8178 Epoch 54/100 24/24 [==============================] - 19s 776ms/step - loss: 19.6136 - val_loss: 19.7537 Epoch 55/100 24/24 [==============================] - 19s 777ms/step - loss: 20.1485 - val_loss: 25.1544 Epoch 56/100 24/24 [==============================] - 19s 777ms/step - loss: 19.6000 - val_loss: 48.2337 Epoch 57/100 24/24 [==============================] - 19s 779ms/step - loss: 19.7300 - val_loss: 271.8140 Epoch 58/100 24/24 [==============================] - 19s 773ms/step - loss: 20.1995 - val_loss: 20.0360 Epoch 59/100 24/24 [==============================] - 19s 778ms/step - loss: 19.4499 - val_loss: 18.9209 Epoch 60/100 24/24 [==============================] - 19s 776ms/step - loss: 19.4476 - val_loss: 18.7522 Epoch 61/100 24/24 [==============================] - 19s 777ms/step - loss: 19.3816 - val_loss: 18.3116 Epoch 62/100 24/24 [==============================] - 19s 775ms/step - loss: 18.9603 - val_loss: 17.7904 Epoch 63/100 24/24 [==============================] - 19s 776ms/step - loss: 19.2028 - val_loss: 18.6347 Epoch 64/100 24/24 [==============================] - 19s 776ms/step - loss: 19.5405 - val_loss: 18.8356 Epoch 65/100 24/24 [==============================] - 19s 774ms/step - loss: 18.7260 - val_loss: 19.5147 Epoch 66/100 24/24 [==============================] - 19s 776ms/step - loss: 18.6204 - val_loss: 18.4056 Epoch 67/100 24/24 [==============================] - 19s 777ms/step - loss: 18.7061 - val_loss: 17.8649 Epoch 68/100 24/24 [==============================] - 19s 776ms/step - loss: 18.7692 - val_loss: 18.7073 Epoch 69/100 24/24 [==============================] - 19s 774ms/step - loss: 18.4413 - val_loss: 17.8672 Epoch 70/100 24/24 [==============================] - 19s 777ms/step - loss: 18.4271 - val_loss: 17.1728 Epoch 71/100 24/24 [==============================] - 19s 777ms/step - loss: 18.1385 - val_loss: 16.6848 Epoch 72/100 24/24 [==============================] - 19s 775ms/step - loss: 18.3120 - val_loss: 17.9856 Epoch 73/100 24/24 [==============================] - 19s 778ms/step - loss: 17.7598 - val_loss: 18.1857 Epoch 74/100 24/24 [==============================] - 19s 781ms/step - loss: 18.0805 - val_loss: 17.2571 Epoch 75/100 24/24 [==============================] - 19s 779ms/step - loss: 17.6560 - val_loss: 18.0094 Epoch 76/100 24/24 [==============================] - 19s 777ms/step - loss: 17.8811 - val_loss: 17.1414 Epoch 77/100 24/24 [==============================] - 19s 777ms/step - loss: 17.6542 - val_loss: 18.0857 Epoch 78/100 24/24 [==============================] - 19s 780ms/step - loss: 17.8937 - val_loss: 17.0371 Epoch 79/100 24/24 [==============================] - 19s 777ms/step - loss: 17.6179 - val_loss: 23.6756 Epoch 80/100 24/24 [==============================] - 19s 776ms/step - loss: 17.4508 - val_loss: 17.0178 Epoch 81/100 24/24 [==============================] - 19s 780ms/step - loss: 17.7438 - val_loss: 16.7333 Epoch 82/100 24/24 [==============================] - 19s 776ms/step - loss: 17.7676 - val_loss: 67.6749 Epoch 83/100 24/24 [==============================] - 19s 777ms/step - loss: 17.1856 - val_loss: 17.5176 Epoch 84/100 24/24 [==============================] - 19s 777ms/step - loss: 17.1831 - val_loss: 16.8703 Epoch 85/100 24/24 [==============================] - 19s 777ms/step - loss: 16.9395 - val_loss: 18.3559 Epoch 86/100 24/24 [==============================] - 19s 777ms/step - loss: 17.4497 - val_loss: 17.6610 Epoch 87/100 24/24 [==============================] - 19s 777ms/step - loss: 16.7546 - val_loss: 18.7588 Epoch 88/100 24/24 [==============================] - 19s 775ms/step - loss: 17.3181 - val_loss: 17.9550 Epoch 89/100 24/24 [==============================] - 19s 777ms/step - loss: 16.6001 - val_loss: 15.6468 Epoch 90/100 24/24 [==============================] - 19s 779ms/step - loss: 16.9396 - val_loss: 17.5748 Epoch 91/100 24/24 [==============================] - 19s 776ms/step - loss: 16.6347 - val_loss: 17.1885 Epoch 92/100 24/24 [==============================] - 19s 775ms/step - loss: 17.0368 - val_loss: 16.5268 Epoch 93/100 24/24 [==============================] - 19s 777ms/step - loss: 16.3248 - val_loss: 16.6590 Epoch 94/100 24/24 [==============================] - 19s 777ms/step - loss: 16.4596 - val_loss: 15.1912 Epoch 95/100 24/24 [==============================] - 19s 777ms/step - loss: 16.9770 - val_loss: 15.4842 Epoch 96/100 24/24 [==============================] - 19s 776ms/step - loss: 16.4053 - val_loss: 17.7234 Epoch 97/100 24/24 [==============================] - 19s 777ms/step - loss: 16.1250 - val_loss: 16.5083 Epoch 98/100 24/24 [==============================] - 19s 777ms/step - loss: 16.4032 - val_loss: 15.9407 Epoch 99/100 24/24 [==============================] - 19s 776ms/step - loss: 16.2643 - val_loss: 16.7436 Epoch 100/100 24/24 [==============================] - 19s 777ms/step - loss: 15.9776 - val_loss: 16.2618

I train yolo on raccon dataset. After 100 epoch, i still can not detect any object.

I have the same problem can you share your solution?

For those of You who have problem with bounding boxes and score 0 #319

I also got this problem, My loss and val_loss are around 17 to 16 after 300 Epoch with all layer unfreeze, but it still can’t find any box, even in training dataset. Does anyone know what’s wrong?