pytorch_geometric: new CI fails
π Describe the bug
=========================== short test summary info ============================
FAILED test/datasets/test_elliptic.py::test_elliptic_bitcoin_dataset - TypeEr...
FAILED test/utils/test_convert.py::test_to_cugraph[False-True-edge_weight1]
FAILED test/utils/test_convert.py::test_to_cugraph[False-False-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[True-True-None] - assert...
FAILED test/utils/test_convert.py::test_from_cugraph[True-True-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[True-False-None] - asser...
FAILED test/utils/test_convert.py::test_from_cugraph[True-False-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[False-True-None] - asser...
FAILED test/utils/test_convert.py::test_from_cugraph[False-True-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[False-False-None] - asse...
FAILED test/utils/test_convert.py::test_from_cugraph[False-False-edge_weight1]
FAILED test/utils/test_spmm.py::test_spmm_basic[device1] - AssertionError: as...
==== 12 failed
=================================== FAILURES ===================================
________________________ test_elliptic_bitcoin_dataset _________________________
get_dataset = functools.partial(<function load_dataset at 0x7f5c16405ee0>, '/tmp/pyg_test_datasets')
@onlyFullTest
def test_elliptic_bitcoin_dataset(get_dataset):
> dataset = get_dataset(name='EllipticBitcoinDataset')
test/datasets/test_elliptic.py:6:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
test/conftest.py:41: in load_dataset
return EllipticBitcoinDataset(path, *args, **kwargs)
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/datasets/elliptic.py:60: in __init__
super().__init__(root, transform, pre_transform)
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/data/in_memory_dataset.py:57: in __init__
super().__init__(root, transform, pre_transform, pre_filter, log)
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/data/dataset.py:97: in __init__
self._process()
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/data/dataset.py:224: in _process
self.process()
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/datasets/elliptic.py:90: in process
x = torch.from_numpy(df_features.loc[:, 2:].values).to(torch.float)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:873: in __getitem__
return self._getitem_tuple(key)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:1055: in _getitem_tuple
return self._getitem_tuple_same_dim(tup)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:750: in _getitem_tuple_same_dim
retval = getattr(retval, self.name)._getitem_axis(key, axis=i)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:1088: in _getitem_axis
return self._get_slice_axis(key, axis=axis)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexing.py:1122: in _get_slice_axis
indexer = labels.slice_indexer(
/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py:4966: in slice_indexer
start_slice, end_slice = self.slice_locs(start, end, step=step, kind=kind)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py:5169: in slice_locs
start_slice = self.get_slice_bound(start, "left", kind)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py:5079: in get_slice_bound
label = self._maybe_cast_slice_bound(label, side, kind)
/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py:5031: in _maybe_cast_slice_bound
self._invalid_indexer("slice", label)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = Index([ 'txId', 'time_step', 2, 3, 4,
5, 6, 7, ... 161,
162, 163, 164, 165, 166],
dtype='object', length=167)
form = 'slice', key = 2
def _invalid_indexer(self, form: str_t, key):
"""
Consistent invalid indexer message.
"""
> raise TypeError(
f"cannot do {form} indexing on {type(self).__name__} with these "
f"indexers [{key}] of type {type(key).__name__}"
)
E TypeError: cannot do slice indexing on Index with these indexers [2] of type int
/usr/local/lib/python3.8/dist-packages/pandas/core/indexes/base.py:3267: TypeError
___________________ test_to_cugraph[False-True-edge_weight1] ___________________
edge_weight = tensor([0.4664, 0.3317, 0.4964, 0.4277]), directed = False
relabel_nodes = True
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.rand(4)])
@pytest.mark.parametrize('relabel_nodes', [True, False])
@pytest.mark.parametrize('directed', [True, False])
def test_to_cugraph(edge_weight, directed, relabel_nodes):
import cugraph
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
graph = to_cugraph(edge_index, edge_weight, relabel_nodes, directed)
assert isinstance(graph, cugraph.Graph)
assert graph.number_of_nodes() == 3
edge_list = graph.view_edge_list()
assert edge_list is not None
edge_list = edge_list.sort_values(by=['src', 'dst'])
cu_edge_index = edge_list[['src', 'dst']].to_pandas().values
assert edge_index.tolist() == cu_edge_index.T.tolist()
if edge_weight is not None:
cu_edge_weight = edge_list['weights'].to_pandas().values
> assert edge_weight.tolist() == cu_edge_weight.tolist()
E assert [0.4664377570...6652932167053] == [0.4664377570...7101001739502]
E Left contains 2 more items, first extra item: 0.4963948[726](https://gitlab-master.nvidia.com/dl/dgx/pyg/-/jobs/53984430#L726)654053
E Use -v to get the full diff
test/utils/test_convert.py:433: AssertionError
__________________ test_to_cugraph[False-False-edge_weight1] ___________________
edge_weight = tensor([0.4664, 0.3317, 0.4964, 0.4277]), directed = False
relabel_nodes = False
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.rand(4)])
@pytest.mark.parametrize('relabel_nodes', [True, False])
@pytest.mark.parametrize('directed', [True, False])
def test_to_cugraph(edge_weight, directed, relabel_nodes):
import cugraph
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
graph = to_cugraph(edge_index, edge_weight, relabel_nodes, directed)
assert isinstance(graph, cugraph.Graph)
assert graph.number_of_nodes() == 3
edge_list = graph.view_edge_list()
assert edge_list is not None
edge_list = edge_list.sort_values(by=['src', 'dst'])
cu_edge_index = edge_list[['src', 'dst']].to_pandas().values
assert edge_index.tolist() == cu_edge_index.T.tolist()
if edge_weight is not None:
cu_edge_weight = edge_list['weights'].to_pandas().values
> assert edge_weight.tolist() == cu_edge_weight.tolist()
E assert [0.4664377570...6652932167053] == [0.4664377570...7101001[739](https://gitlab-master.nvidia.com/dl/dgx/pyg/-/jobs/53984430#L739)502]
E Left contains 2 more items, first extra item: 0.4963948726654053
E Use -v to get the full diff
test/utils/test_convert.py:433: AssertionError
______________________ test_from_cugraph[True-True-None] _______________________
edge_weight = None, directed = True, relabel_nodes = True
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 0, 2, 1], [2, 1, 1, 0]] == [[0, 1, 1, 2], [1, 0, 2, 1]]
E At index 0 diff: [1, 0, 2, 1] != [0, 1, 1, 2]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
__________________ test_from_cugraph[True-True-edge_weight1] ___________________
edge_weight = tensor([-0.2837, 0.9451, -0.3490, 0.4564]), directed = True
relabel_nodes = True
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 0, 2, 1], [2, 1, 1, 0]] == [[0, 1, 1, 2], [1, 0, 2, 1]]
E At index 0 diff: [1, 0, 2, 1] != [0, 1, 1, 2]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
______________________ test_from_cugraph[True-False-None] ______________________
edge_weight = None, directed = False, relabel_nodes = True
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 0], [2, 1]] == [[0, 1], [1, 2]]
E At index 0 diff: [1, 0] != [0, 1]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
__________________ test_from_cugraph[True-False-edge_weight1] __________________
edge_weight = tensor([-0.2837, 0.9451, -0.3490, 0.4564]), directed = False
relabel_nodes = True
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 0], [2, 1]] == [[0, 1], [1, 2]]
E At index 0 diff: [1, 0] != [0, 1]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
______________________ test_from_cugraph[False-True-None] ______________________
edge_weight = None, directed = True, relabel_nodes = False
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 1, 2, 0], [0, 2, 1, 1]] == [[0, 1, 1, 2], [1, 0, 2, 1]]
E At index 0 diff: [1, 1, 2, 0] != [0, 1, 1, 2]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
__________________ test_from_cugraph[False-True-edge_weight1] __________________
edge_weight = tensor([-0.2837, 0.9451, -0.3490, 0.4564]), directed = True
relabel_nodes = False
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 1, 2, 0], [0, 2, 1, 1]] == [[0, 1, 1, 2], [1, 0, 2, 1]]
E At index 0 diff: [1, 1, 2, 0] != [0, 1, 1, 2]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
_____________________ test_from_cugraph[False-False-None] ______________________
edge_weight = None, directed = False, relabel_nodes = False
@withPackage('cudf')
/usr/local/lib/python3.8/dist-packages/coverage/control.py:836: CoverageWarning: No data was collected. (no-data-collected)
self._warn("No data was collected.", slug="no-data-collected")
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 0], [2, 1]] == [[0, 1], [1, 2]]
E At index 0 diff: [1, 0] != [0, 1]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
_________________ test_from_cugraph[False-False-edge_weight1] __________________
edge_weight = tensor([-0.2837, 0.9451, -0.3490, 0.4564]), directed = False
relabel_nodes = False
@withPackage('cudf')
@withPackage('cugraph')
@pytest.mark.parametrize('edge_weight', [None, torch.randn(4)])
@pytest.mark.parametrize('directed', [True, False])
@pytest.mark.parametrize('relabel_nodes', [True, False])
def test_from_cugraph(edge_weight, directed, relabel_nodes):
import cudf
import cugraph
from torch.utils.dlpack import to_dlpack
if directed:
edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]])
else:
edge_index = torch.tensor([[0, 1], [1, 2]])
if edge_weight is not None:
edge_weight[:edge_index.size(1)]
G = cugraph.Graph(directed=directed)
df = cudf.from_dlpack(to_dlpack(edge_index.t()))
if edge_weight is not None:
df['2'] = cudf.from_dlpack(to_dlpack(edge_weight))
G.from_cudf_edgelist(
df,
source=0,
destination=1,
edge_attr='2' if edge_weight is not None else None,
renumber=relabel_nodes,
)
cu_edge_index, cu_edge_weight = from_cugraph(G)
> assert cu_edge_index.tolist() == edge_index.tolist()
E assert [[1, 0], [2, 1]] == [[0, 1], [1, 2]]
E At index 0 diff: [1, 0] != [0, 1]
E Use -v to get the full diff
test/utils/test_convert.py:469: AssertionError
___________________________ test_spmm_basic[device1] ___________________________
device = device(type='cuda', index=0)
@withCUDA
def test_spmm_basic(device):
src = torch.randn(5, 4, device=device)
other = torch.randn(4, 8, device=device)
out1 = src @ other
out2 = spmm(src.to_sparse(), other, reduce='sum')
out3 = spmm(SparseTensor.from_dense(src), other, reduce='sum')
assert out1.size() == (5, 8)
> assert torch.allclose(out1, out2)
E AssertionError: assert False
E + where False = <built-in method allclose of type object at 0x7f5bcc3dcbc0>(tensor([[ 2.0477, -1.1278, -0.3330, 1.9007, 3.0619, 1.4840, 2.0230, -2.3307],\n [ 1.2360, 2.8585, -1.6878, ...8, 1.4510],\n [ 0.8829, -2.6074, 0.4[767](https://gitlab-master.nvidia.com/dl/dgx/pyg/-/jobs/53984430#L767), 2.0739, 3.5401, 2.6623, 0.9645, -1.9539]],\n device='cuda:0'), tensor([[ 2.0484, -1.1278, -0.3330, 1.9013, 3.0617, 1.4845, 2.0231, -2.3308],\n [ 1.2361, 2.8589, -1.6877, ...8, 1.4507],\n [ 0.8829, -2.6078, 0.4[768](https://gitlab-master.nvidia.com/dl/dgx/pyg/-/jobs/53984430#L768), 2.0739, 3.5405, 2.6624, 0.9641, -1.[954](https://gitlab-master.nvidia.com/dl/dgx/pyg/-/jobs/53984430#L954)3]],\n device='cuda:0'))
E + where <built-in method allclose of type object at 0x7f5bcc3dcbc0> = torch.allclose
test/utils/test_spmm.py:19: AssertionError
=============================== warnings summary ===============================
../../../usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/graphgym/config.py:19
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/graphgym/config.py:19: UserWarning: Could not define global config object. Please install 'yacs' via 'pip install yacs' in order to use GraphGym
warnings.warn("Could not define global config object. Please install "
../../../usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/graphgym/imports.py:14
/usr/local/lib/python3.8/dist-packages/torch_geometric-2.3.0-py3.8.egg/torch_geometric/graphgym/imports.py:14: UserWarning: Please install 'pytorch_lightning' via 'pip install pytorch_lightning' in order to use GraphGym
warnings.warn("Please install 'pytorch_lightning' via "
../../../usr/local/lib/python3.8/dist-packages/optuna/storages/_rdb/models.py:35
/usr/local/lib/python3.8/dist-packages/optuna/storages/_rdb/models.py:35: MovedIn20Warning: The ``declarative_base()`` function is now available as sqlalchemy.orm.declarative_base(). (deprecated since: 2.0) (Background on SQLAlchemy 2.0 at: https://sqlalche.me/e/b8d9)
BaseModel: Any = declarative_base()
test/nn/conv/test_lg_conv.py::test_lg_conv
/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py:1480: UserWarning: operator() profile_node %570 : int = prim::profile_ivalue(%565)
does not have profile information (Triggered internally at /opt/pytorch/pytorch/torch/csrc/jit/codegen/cuda/graph_fuser.cpp:105.)
return forward_call(*args, **kwargs)
test/nn/models/test_basic_gnn.py: 1 warning
test/nn/models/test_rev_gnn.py: 20 warnings
/usr/local/lib/python3.8/dist-packages/torch/storage.py:315: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly.
warnings.warn(message, UserWarning)
-- Docs: https://docs.pytest.org/en/stable/warnings.html
---------- coverage: platform linux, python 3.8.10-final-0 -----------
Coverage XML written to file coverage.xml
=========================== short test summary info ============================
FAILED test/datasets/test_elliptic.py::test_elliptic_bitcoin_dataset - TypeEr...
FAILED test/utils/test_convert.py::test_to_cugraph[False-True-edge_weight1]
FAILED test/utils/test_convert.py::test_to_cugraph[False-False-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[True-True-None] - assert...
FAILED test/utils/test_convert.py::test_from_cugraph[True-True-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[True-False-None] - asser...
FAILED test/utils/test_convert.py::test_from_cugraph[True-False-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[False-True-None] - asser...
FAILED test/utils/test_convert.py::test_from_cugraph[False-True-edge_weight1]
FAILED test/utils/test_convert.py::test_from_cugraph[False-False-None] - asse...
FAILED test/utils/test_convert.py::test_from_cugraph[False-False-edge_weight1]
FAILED test/utils/test_spmm.py::test_spmm_basic[device1] - AssertionError: as...
==== 12 failed, 3723 passed, 493 skipped, 25 warnings in 296.83s (0:04:56) =====
Environment
updated to latest pyg and pyg-lib after the last issue was addressed
About this issue
- Original URL
- State: closed
- Created a year ago
- Comments: 17 (17 by maintainers)
Commits related to this issue
- Fix `cugraph`-related tests (#6788) Fix #6782. — committed to pyg-team/pytorch_geometric by rusty1s a year ago
- Solve `cugraph` test failures (#6872) address part of https://github.com/pyg-team/pytorch_geometric/issues/6782 --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.... — committed to pyg-team/pytorch_geometric by puririshi98 a year ago
- fix planetoids https://github.com/pyg-team/pytorch_geometric/issues/6782#issuecomment-1460485546 — committed to pyg-team/pytorch_geometric by puririshi98 a year ago
- Respect tuple of `data` objects in `Dataset.num_classes` (#6882) https://github.com/pyg-team/pytorch_geometric/issues/6782#issuecomment-1460485546 > Traceback (most recent call last): > File "a... — committed to pyg-team/pytorch_geometric by puririshi98 a year ago
Ok, In this case I think all we need to do is add
pandas>=1.5.2
tosetup.py
.What is the latest error log on the cugraph tests? I assumed that just sorting the final edge indices resolves the issue, but havenβt confirmed it is working since I have trouble installing it due to some
GLIBC
issues.I fixed cugraph related tests in https://github.com/pyg-team/pytorch_geometric/pull/6788. Regarding
spmm
tests, I am not totally sure. Do you mind taking a look as well? It runs fine for me locally.