pandas: BUG: `pd.to_numeric` has an inconsistent behavior for `datetime` objects
-
I have checked that this issue has not already been reported.
-
I have confirmed this bug exists on the latest version of pandas.
-
(optional) I have confirmed this bug exists on the master branch of pandas.
Code Sample, a copy-pastable example
>>> import pandas as pd
>>> from datetime import datetime
>>> pd.to_numeric(datetime(2021, 8, 22), errors="coerce")
nan
>>> pd.to_numeric(pd.Series(datetime(2021, 8, 22)), errors="coerce")
0 1629590400000000000
dtype: int64
>>> pd.Series([datetime(2021, 8, 22)]).apply(partial(pd.to_numeric), errors="coerce")
0 NaN
dtype: float64
>>>
>>> pd.to_numeric(pd.NaT, errors="coerce")
nan
>>> pd.to_numeric(pd.Series(pd.NaT), errors="coerce")
0 -9223372036854775808
dtype: int64
>>> pd.Series([pd.NaT]).apply(partial(pd.to_numeric), errors="coerce")
0 NaN
dtype: float64
Problem description
When using pd.to_numeric
to convert a pd.Series
with dtype datetime64[ns]
, it returns different values than converting the series value by value
Expected Output
Converting a pd.Series
as a whole should be the same than converting it value by value.
I am not sure about what the correct output should be, but IMO the output should be consistent in these two scenarios.
What I suggest:
- For no-null values, returns the same value. Maybe the integer?
- For
pd.NaT
, always returnsnp.NaN
Output of pd.show_versions()
I am using the latest version of master
until today
INSTALLED VERSIONS
commit : e39ea3024cebb4e7a7fd35972a44637de6c41650 python : 3.8.3.final.0 python-bits : 64 OS : Darwin OS-release : 19.6.0 Version : Darwin Kernel Version 19.6.0: Tue Jun 22 19:49:55 PDT 2021; root:xnu-6153.141.35~1/RELEASE_X86_64 machine : x86_64 processor : i386 byteorder : little LC_ALL : None LANG : None LOCALE : en_US.UTF-8
pandas : 1.4.0.dev0+517.gc3761e24d8 numpy : 1.18.5 pytz : 2020.1 dateutil : 2.8.1 pip : 20.1.1 setuptools : 49.2.0.post20200714 Cython : 0.29.21 pytest : 5.4.3 hypothesis : None sphinx : 3.1.2 blosc : None feather : None xlsxwriter : 1.2.9 lxml.etree : 4.5.2 html5lib : 1.1 pymysql : None psycopg2 : None jinja2 : 2.11.2 IPython : 7.16.1 pandas_datareader: None bs4 : 4.9.1 bottleneck : 1.3.2 fsspec : 0.7.4 fastparquet : None gcsfs : None matplotlib : 3.2.2 numexpr : 2.7.1 odfpy : None openpyxl : 3.0.4 pandas_gbq : None pyarrow : None pyxlsb : None s3fs : None scipy : 1.5.0 sqlalchemy : 1.3.18 tables : 3.6.1 tabulate : 0.8.9 xarray : None xlrd : 1.2.0 xlwt : 1.3.0 numba : 0.50.1
About this issue
- Original URL
- State: open
- Created 3 years ago
- Comments: 15 (5 by maintainers)
Understood. Then let’s split the problem
pd.NaT
(will do this before weekend)np.array
when type is number-like. Approach for mixed types TBF (open to discuss and implement)