neptune-client: BUG: neptune.api_exceptions.SSLError: SSL certificate validation failed
I am unable to log to neptune ai and it showing following error
neptune.api_exceptions.SSLError: SSL certificate validation failed. Set NEPTUNE_ALLOW_SELF_SIGNED_CERTIFICATE environment variable to accept self-signed certificates.
Specs
pytorch-lightning==1.5.0
neptune-client==0.13.1
Ubunto 20.04
Python 3.8.10
CODE
class OurModel(LightningModule):
def __init__(self):
super(OurModel,self).__init__()
self.model = timm.create_model(model_name,pretrained=True)
self.fc1=nn.Linear(1000,500)
self.relu=nn.ReLU()
self.fc2= nn.Linear(500,1)
#parameters
self.lr=1e-3
self.batch_size=72
self.numworker=18
self.acc = torchmetrics.Accuracy()
self.criterion=nn.BCEWithLogitsLoss()
def forward(self,x):
x= self.model(x)
x=self.fc1(x)
x=self.relu(x)
x=self.fc2(x)
return x
def configure_optimizers(self):
opt=torch.optim.Adam(params=self.parameters(),lr=self.lr )
scheduler=CosineAnnealingLR(opt,T_max=10, eta_min=1e-6, last_epoch=-1)
return {'optimizer': opt,'lr_scheduler':scheduler}
def train_dataloader(self):
return DataLoader(DataReader(df_train,aug), batch_size = self.batch_size,
num_workers=self.numworker,pin_memory=True,shuffle=True)
def training_step(self,batch,batch_idx):
image,label=batch
out = self(image).view(-1)
loss=self.criterion(out,label.float())
acc=self.acc(out,label.long())
return {'loss':loss,'acc':acc}
def training_epoch_end(self, outputs):
loss=torch.stack([x["loss"] for x in outputs]).mean().detach().cpu().numpy().round(2)
acc=torch.stack([x["acc"] for x in outputs]).mean().detach().cpu().numpy().round(2)
self.trainacc.append(acc)
self.trainloss.append(loss)
self.log('train_loss', loss)
self.log('train_acc', acc)
def val_dataloader(self):
ds=DataLoader(DataReader(df_val,aug), batch_size = self.batch_size,
num_workers=self.numworker,pin_memory=True, shuffle=False)
return ds
def validation_step(self,batch,batch_idx):
image,label=batch
out=self(image).view(-1)
loss=self.criterion(out,label.float())
acc=self.acc(out,label.long())
return {'loss':loss,'acc':acc}
def validation_epoch_end(self, outputs):
loss=torch.stack([x["loss"] for x in outputs]).mean().detach().cpu().numpy().round(2)
acc=torch.stack([x["acc"] for x in outputs]).mean().detach().cpu().numpy().round(2)
self.valacc.append(acc)
self.valloss.append(loss)
print('validation loss accuracy ',self.current_epoch,loss, acc)
self.log('val_loss', loss)
self.log('val_acc', acc)
model=OurModel()
from pytorch_lightning.loggers import NeptuneLogger
api_token=
neptune_logger = NeptuneLogger(
api_key=api_token,
project="abc/xyz",
name=model_name,
tags=[model_name, save_name],
)
seed_everything(0)
checkpoint_callback = ModelCheckpoint(monitor='val_loss',dirpath='checkpoints',
filename='file',save_last=True)
lr_monitor = LearningRateMonitor(logging_interval='epoch')
trainer = Trainer(max_epochs=50,
deterministic=True,
gpus=-1,precision=16,
accumulate_grad_batches=4,
enable_progress_bar = False,
callbacks=[checkpoint_callback,lr_monitor],
logger=neptune_logger
)
trainer.fit(model)
About this issue
- Original URL
- State: closed
- Created 3 years ago
- Reactions: 1
- Comments: 16 (11 by maintainers)
Ok, got it,
Let me check with our engineering team. We will get back with some insights / more info.