---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-2-ea67f5362246> in <module>
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import mean_squared_error
----> 5 from supervised.automl import AutoML # mljar-supervised
/opt/conda/lib/python3.7/site-packages/supervised/__init__.py in <module>
1 __version__ = "0.7.15"
2
----> 3 from supervised.automl import AutoML
/opt/conda/lib/python3.7/site-packages/supervised/automl.py in <module>
1 import logging
2
----> 3 from supervised.base_automl import BaseAutoML
4
5 from supervised.utils.config import LOG_LEVEL
/opt/conda/lib/python3.7/site-packages/supervised/base_automl.py in <module>
17 from sklearn.metrics import r2_score, accuracy_score
18
---> 19 from supervised.algorithms.registry import AlgorithmsRegistry
20 from supervised.algorithms.registry import BINARY_CLASSIFICATION
21 from supervised.algorithms.registry import MULTICLASS_CLASSIFICATION
/opt/conda/lib/python3.7/site-packages/supervised/algorithms/registry.py in <module>
62 # Import algorithm to be registered
63 import supervised.algorithms.random_forest
---> 64 import supervised.algorithms.xgboost
65 import supervised.algorithms.decision_tree
66 import supervised.algorithms.baseline
/opt/conda/lib/python3.7/site-packages/supervised/algorithms/xgboost.py in <module>
4 import pandas as pd
5 import os
----> 6 import xgboost as xgb
7
8 from supervised.algorithms.algorithm import BaseAlgorithm
/opt/conda/lib/python3.7/site-packages/xgboost/__init__.py in <module>
7 import os
8
----> 9 from .core import DMatrix, DeviceQuantileDMatrix, Booster
10 from .training import train, cv
11 from . import rabit # noqa
/opt/conda/lib/python3.7/site-packages/xgboost/core.py in <module>
17 import scipy.sparse
18
---> 19 from .compat import (
20 STRING_TYPES, DataFrame, py_str,
21 PANDAS_INSTALLED,
/opt/conda/lib/python3.7/site-packages/xgboost/compat.py in <module>
106 # cudf
107 try:
--> 108 from cudf import concat as CUDF_concat
109 except ImportError:
110 CUDF_concat = None
/opt/conda/lib/python3.7/site-packages/cudf/__init__.py in <module>
9 import rmm
10
---> 11 from cudf import core, datasets, testing
12 from cudf._version import get_versions
13 from cudf.core import (
/opt/conda/lib/python3.7/site-packages/cudf/core/__init__.py in <module>
1 # Copyright (c) 2018-2019, NVIDIA CORPORATION.
----> 2 from cudf.core import buffer, column
3 from cudf.core.buffer import Buffer
4 from cudf.core.dataframe import DataFrame, from_pandas, merge
5 from cudf.core.index import (
/opt/conda/lib/python3.7/site-packages/cudf/core/column/__init__.py in <module>
1 # Copyright (c) 2020, NVIDIA CORPORATION.
2
----> 3 from cudf.core.column.categorical import CategoricalColumn
4 from cudf.core.column.column import (
5 ColumnBase,
/opt/conda/lib/python3.7/site-packages/cudf/core/column/categorical.py in <module>
6
7 import cudf
----> 8 from cudf import _lib as libcudf
9 from cudf._lib.transform import bools_to_mask
10 from cudf.core.buffer import Buffer
/opt/conda/lib/python3.7/site-packages/cudf/_lib/__init__.py in <module>
2 import numpy as np
3
----> 4 from . import (
5 avro,
6 binaryop,
cudf/_lib/gpuarrow.pyx in init cudf._lib.gpuarrow()
AttributeError: module 'pyarrow.lib' has no attribute 'IpcWriteOptions'
ThankYou problem solved
Your AutoMlJar is working wonders in classification. If I publish my notebook with a few simple codes, it will ruin the leader board in another competition. I just want to thank you for your wonderful work. @pplonski
this works amazing
Thanks you its working magically
I was able to install mljar from github in kaggle notebook and successfully run it. It was without GPU. The link to notebook: https://www.kaggle.com/mt77pp/mljar-autoeda-automl-prediction
Additionally, I have added
report()method, so user get an interactive report from models. Just click on the model to see its details.Kaggle Competition
Right now I am on 4th position by using the average output of multiple models especially LGB and Catboost. I think using optuna improved my params automatically. H20 Auto ml and Auto Keras perform worst than your Auto ml, I used fast Auto ml but that was just light version of your model.
I’ve added an issue in kaggle docker repo https://github.com/Kaggle/docker-python/issues/936