mlflow: [BUG] Mlflow returns error 504 after uploading large files (800MB +). Error with mlflow.log_artifact()

Issues Policy acknowledgement

  • I have read and agree to submit bug reports in accordance with the issues policy

Willingness to contribute

Yes. I can contribute a fix for this bug independently.

MLflow version

  • Client: 2.0.1
  • Tracking server: 2.0.1

System information

OS : Red Hat Enterprise Linux release 8.6 (Ootpa) Python : 3.10.8

Describe the problem

After uploading 800 + MB files it throws 504 error at client

mlflow.log_atifacts() throws error at client if the file size is over 800MB . It succesfully uploads the file with the status finish.But at client end it throws an error 504 as below.

(mlflow_env) [userid@server-dl-login4:~/mlflow-testing] $ python run.py
MLflow version: 2.0.1
2022/12/19 18:03:09 INFO mlflow.tracking.fluent: Experiment with name 'mlflow_2_testing' does not exist. Creating a new experiment.
Tracking URI: https://mlflow-new-deploy.internal.org.cloud/
experiment_id 16
Active run_id: d18f0bd33976488d8fa34bc283c8e2a2
write output
Traceback (most recent call last):
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
    resp = conn.urlopen(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
    return self.urlopen(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
    return self.urlopen(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
    return self.urlopen(
  [Previous line repeated 2 more times]
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 868, in urlopen
    retries = retries.increment(method, url, response=response, _pool=self)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/util/retry.py", line 592, in increment
    raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='https://mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 166, in http_request
    return _get_http_response_with_retries(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 97, in _get_http_response_with_retries
    return session.request(method, url, **kwargs)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
    resp = self.send(prep, **send_kwargs)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
    r = adapter.send(request, **kwargs)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 556, in send
    raise RetryError(e, request=request)
requests.exceptions.RetryError: HTTPSConnectionPool(host='mlflow-new-deploy-https://mlflow-new-deploy.internal.org.cloud/', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
  File "/home/userid/mlflow-testing/run.py", line 87, in <module>
    mlflow.log_artifact("1.8gbfile")
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/fluent.py", line 778, in log_artifact
    MlflowClient().log_artifact(run_id, local_path, artifact_path)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/client.py", line 1002, in log_artifact
    self._tracking_client.log_artifact(run_id, local_path, artifact_path)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/_tracking_service/client.py", line 416, in log_artifact
    artifact_repo.log_artifact(local_path, artifact_path)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/store/artifact/http_artifact_repo.py", line 25, in log_artifact
    resp = http_request(self._host_creds, endpoint, "PUT", data=f)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 184, in http_request
    raise MlflowException("API request to %s failed with exception %s" % (url, e))
mlflow.exceptions.MlflowException: API request to https://mlflow-new-deploy.internal.org.cloud/api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile failed with exception HTTPSConnectionPool(host='mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses'))

Tracking information

python run.py
MLflow version: 2.0.1
Tracking URI: https://mlflow-new-deploy.internal.org.com/
experiment_id 17
System information: Linux #1 SMP Mon Jul 18 11:14:02 EDT 2022
Python version: 3.10.8
MLflow version: 2.0.1
MLflow module location: /home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/__init__.py
Tracking URI: https://mlflow-new-deploy.internal.org.com/
Registry URI: https://mlflow-new-deploy.internal.org.com/
Active experiment ID: 17
Active run ID: 3a80930872d24ad0b0f245bc66d039ff
Active run artifact URI: mlflow-artifacts:/17/3a80930872d24ad0b0f245bc66d039ff/artifacts
MLflow environment variables: {
    "MLFLOW_TRACKING_INSECURE_TLS": "True"
}
MLflow dependencies: {
    "click": "8.1.3",
    "cloudpickle": "2.2.0",
    "databricks-cli": "0.17.4",
    "entrypoints": "0.4",
    "gitpython": "3.1.29",
    "pyyaml": "6.0",
    "protobuf": "4.21.11",
    "pytz": "2022.7",
    "requests": "2.28.1",
    "packaging": "21.3",
    "importlib-metadata": "5.2.0",
    "sqlparse": "0.4.3",
    "alembic": "1.9.0",
    "docker": "6.0.0",
    "Flask": "2.2.2",
    "numpy": "1.23.5",
    "scipy": "1.9.3",
    "pandas": "1.5.2",
    "querystring-parser": "1.2.4",
    "sqlalchemy": "1.4.45",
    "scikit-learn": "1.2.0",
    "pyarrow": "10.0.1",
    "shap": "0.41.0",
    "markdown": "3.4.1",
    "matplotlib": "3.6.2",
    "gunicorn": "20.1.0",
    "Jinja2": "3.1.2"
}
write output

In case of larger file output freezes at this point and later shows 504 error

==================================

Command :-

          mlflow db upgrade "${BACKEND_URI}"; mlflow server --host 0.0.0.0
          --backend-store-uri "${BACKEND_URI}" --artifacts-destination
          "${ARTIFACT_ROOT}/mlartifacts/" --serve-artifacts --gunicorn-opts
          "--log-level debug --timeout 8000 --graceful-timeout 75
          --keep-alive 3600" --expose-prometheus "/mlflow/metrics"  

Keep-alive and timeout is added as part of troubleshooting

Code to reproduce issue

Code :-

import os
import mlflow
from mlflow.tracking import MlflowClient
from random import random, randint
from mlflow import log_metric, log_param, log_artifacts
from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository
from mlflow.tracking import MlflowClient
from mlflow.store.artifact.mlflow_artifacts_repo import MlflowArtifactsRepository
from mlflow.store.tracking import DEFAULT_ARTIFACTS_URI
import boto3
import requests
import sys

mlflow.set_tracking_uri('https://mlflow-new-deploy.internal.org.cloud/')
client = MlflowClient()
experiment_name= 'mlflow_2.0.1_testing'

print("MLflow version:", mlflow.__version__)

mlflow.set_experiment(experiment_name)

print("Tracking URI:", mlflow.get_tracking_uri())

experiment_id = client.get_experiment_by_name(experiment_name).experiment_id
print("experiment_id",experiment_id)
experiment = mlflow.get_experiment(experiment_id)
mlflow.start_run()
mlflow.doctor()
mlflow.log_metric("foo", 2)
mlflow.log_metric("a", 4)
print ("write output")
mlflow.log_artifact("largefile_latest")
print("Artifact URI:",mlflow.get_artifact_uri())
print("Artifact Location: {}".format(experiment.artifact_location))

artifact_uri = mlflow.get_artifact_uri()
mlflow.end_run()


Stack trace

(mlflow_env) [userid@server-dl-login4:~/mlflow-testing] $ python run.py
MLflow version: 2.0.1
2022/12/19 18:03:09 INFO mlflow.tracking.fluent: Experiment with name 'mlflow_2_testing' does not exist. Creating a new experiment.
Tracking URI: https://mlflow-new-deploy.internal.org.cloud/
experiment_id 16
Active run_id: d18f0bd33976488d8fa34bc283c8e2a2
write output
Traceback (most recent call last):
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
    resp = conn.urlopen(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
    return self.urlopen(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
    return self.urlopen(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
    return self.urlopen(
  [Previous line repeated 2 more times]
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 868, in urlopen
    retries = retries.increment(method, url, response=response, _pool=self)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/util/retry.py", line 592, in increment
    raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='https://mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 166, in http_request
    return _get_http_response_with_retries(
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 97, in _get_http_response_with_retries
    return session.request(method, url, **kwargs)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
    resp = self.send(prep, **send_kwargs)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
    r = adapter.send(request, **kwargs)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 556, in send
    raise RetryError(e, request=request)
requests.exceptions.RetryError: HTTPSConnectionPool(host='mlflow-new-deploy-https://mlflow-new-deploy.internal.org.cloud/', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
  File "/home/userid/mlflow-testing/run.py", line 87, in <module>
    mlflow.log_artifact("1.8gbfile")
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/fluent.py", line 778, in log_artifact
    MlflowClient().log_artifact(run_id, local_path, artifact_path)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/client.py", line 1002, in log_artifact
    self._tracking_client.log_artifact(run_id, local_path, artifact_path)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/_tracking_service/client.py", line 416, in log_artifact
    artifact_repo.log_artifact(local_path, artifact_path)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/store/artifact/http_artifact_repo.py", line 25, in log_artifact
    resp = http_request(self._host_creds, endpoint, "PUT", data=f)
  File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 184, in http_request
    raise MlflowException("API request to %s failed with exception %s" % (url, e))
mlflow.exceptions.MlflowException: API request to https://mlflow-new-deploy.internal.org.cloud/api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile failed with exception HTTPSConnectionPool(host='mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses'))

Other info / logs

2022/12/20 05:49:18 INFO mlflow.store.db.utils: Updating database tables
INFO  [alembic.runtime.migration] Context impl MSSQLImpl.
INFO  [alembic.runtime.migration] Will assume transactional DDL.
[2022-12-20 05:49:22 +0000] [73] [DEBUG] Current configuration:
  config: ./gunicorn.conf.py
  wsgi_app: None
  bind: ['0.0.0.0:5000']
  backlog: 2048
  workers: 4
  worker_class: sync
  threads: 1
  worker_connections: 1000
  max_requests: 0
  max_requests_jitter: 0
  timeout: 8000
  graceful_timeout: 75
  keepalive: 3600
  limit_request_line: 4094
  limit_request_fields: 100
  limit_request_field_size: 8190
  reload: False
  reload_engine: auto
  reload_extra_files: []
  spew: False
  check_config: False
  print_config: False
  preload_app: False
  sendfile: None
  reuse_port: False
  chdir: /
  daemon: False
  raw_env: []
  pidfile: None
  worker_tmp_dir: None
  user: 1002930000
  group: 0
  umask: 0
  initgroups: False
  tmp_upload_dir: None
  secure_scheme_headers: {'X-FORWARDED-PROTOCOL': 'ssl', 'X-FORWARDED-PROTO': 'https', 'X-FORWARDED-SSL': 'on'}
  forwarded_allow_ips: ['127.0.0.1']
  accesslog: None
  disable_redirect_access_to_syslog: False
  access_log_format: %(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"
  errorlog: -
  loglevel: debug
  capture_output: False
  logger_class: gunicorn.glogging.Logger
  logconfig: None
  logconfig_dict: {}
  syslog_addr: udp://localhost:514
  syslog: False
  syslog_prefix: None
  syslog_facility: user
  enable_stdio_inheritance: False
  statsd_host: None
  dogstatsd_tags: 
  statsd_prefix: 
  proc_name: None
  default_proc_name: mlflow.server:app
  pythonpath: None
  paste: None
  on_starting: <function OnStarting.on_starting at 0x7f7e3a55a680>
  on_reload: <function OnReload.on_reload at 0x7f7e3a55a7a0>
  when_ready: <function WhenReady.when_ready at 0x7f7e3a55a8c0>
  pre_fork: <function Prefork.pre_fork at 0x7f7e3a55a9e0>
  post_fork: <function Postfork.post_fork at 0x7f7e3a55ab00>
  post_worker_init: <function PostWorkerInit.post_worker_init at 0x7f7e3a55ac20>
  worker_int: <function WorkerInt.worker_int at 0x7f7e3a55ad40>
  worker_abort: <function WorkerAbort.worker_abort at 0x7f7e3a55ae60>
  pre_exec: <function PreExec.pre_exec at 0x7f7e3a55af80>
  pre_request: <function PreRequest.pre_request at 0x7f7e3a55b0a0>
  post_request: <function PostRequest.post_request at 0x7f7e3a55b130>
  child_exit: <function ChildExit.child_exit at 0x7f7e3a55b250>
  worker_exit: <function WorkerExit.worker_exit at 0x7f7e3a55b370>
  nworkers_changed: <function NumWorkersChanged.nworkers_changed at 0x7f7e3a55b490>
  on_exit: <function OnExit.on_exit at 0x7f7e3a55b5b0>
  proxy_protocol: False
  proxy_allow_ips: ['127.0.0.1']
  keyfile: None
  certfile: None
  ssl_version: 2
  cert_reqs: 0
  ca_certs: None
  suppress_ragged_eofs: True
  do_handshake_on_connect: False
  ciphers: None
  raw_paste_global_conf: []
  strip_header_spaces: False
[2022-12-20 05:49:22 +0000] [73] [INFO] Starting gunicorn 20.1.0
[2022-12-20 05:49:22 +0000] [73] [DEBUG] Arbiter booted
[2022-12-20 05:49:22 +0000] [73] [INFO] Listening at: http://0.0.0.0:5000 (73)
[2022-12-20 05:49:22 +0000] [73] [INFO] Using worker: sync
[2022-12-20 05:49:22 +0000] [74] [INFO] Booting worker with pid: 74
[2022-12-20 05:49:22 +0000] [75] [INFO] Booting worker with pid: 75
[2022-12-20 05:49:22 +0000] [76] [INFO] Booting worker with pid: 76
[2022-12-20 05:49:22 +0000] [77] [INFO] Booting worker with pid: 77
[2022-12-20 05:49:22 +0000] [73] [DEBUG] 4 workers
[2022-12-20 05:49:33 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:57:30 +0000] [77] [DEBUG] GET /api/2.0/mlflow/experiments/get-by-name
[2022-12-20 05:57:30 +0000] [77] [DEBUG] GET /api/2.0/mlflow/experiments/get-by-name
[2022-12-20 05:57:30 +0000] [77] [DEBUG] GET /api/2.0/mlflow/experiments/get
[2022-12-20 05:57:30 +0000] [74] [DEBUG] POST /api/2.0/mlflow/runs/create
[2022-12-20 05:57:30 +0000] [74] [DEBUG] POST /api/2.0/mlflow/runs/log-metric
[2022-12-20 05:57:30 +0000] [74] [DEBUG] POST /api/2.0/mlflow/runs/log-metric
[2022-12-20 05:57:30 +0000] [74] [DEBUG] GET /api/2.0/mlflow/runs/get
[2022-12-20 05:57:30 +0000] [74] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 05:57:38 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:57:47 +0000] [77] [DEBUG] GET /static-files/static/media/fontawesome-webfont.20fd1704ea223900efa9.woff2
[2022-12-20 05:57:49 +0000] [76] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 05:57:49 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:57:49 +0000] [77] [DEBUG] GET /static-files/static/js/547.a604119a.chunk.js
[2022-12-20 05:57:57 +0000] [76] [DEBUG] GET /static-files/static/media/laptop.f3a6b3016fbf319305f629fcbcf937a9.svg
[2022-12-20 05:58:16 +0000] [76] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 05:58:24 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:58:45 +0000] [74] [DEBUG] Ignoring connection reset
[2022-12-20 05:59:25 +0000] [75] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 05:59:28 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:59:38 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:59:40 +0000] [76] [DEBUG] Ignoring connection reset
[2022-12-20 06:00:28 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:00:28 +0000] [76] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 06:00:38 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:00:41 +0000] [75] [DEBUG] Ignoring connection reset
[2022-12-20 06:00:42 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:01:40 +0000] [76] [DEBUG] Ignoring connection reset
[2022-12-20 06:01:40 +0000] [77] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 06:01:42 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:46 +0000] [77] [DEBUG] Ignoring connection reset
[2022-12-20 06:02:49 +0000] [77] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/search
[2022-12-20 06:02:51 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:51 +0000] [75] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:02:51 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:52 +0000] [77] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:02:53 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:54 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:03:00 +0000] [75] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:03:00 +0000] [76] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 06:03:01 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:03:49 +0000] [77] [DEBUG] POST /api/2.0/mlflow/runs/update
[2022-12-20 06:03:54 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:04:02 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:04:09 +0000] [77] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:04:12 +0000] [76] [DEBUG] Ignoring connection reset
[2022-12-20 06:04:16 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:08:26 +0000] [77] [DEBUG] GET //
[2022-12-20 06:08:26 +0000] [75] [DEBUG] GET //static-files/static/css/main.3b6f4584.css
[2022-12-20 06:08:26 +0000] [77] [DEBUG] GET //static-files/static/js/main.6125589f.js
[2022-12-20 06:08:34 +0000] [77] [DEBUG] GET //ajax-api/2.0/mlflow/experiments/search
[2022-12-20 06:08:34 +0000] [74] [DEBUG] GET //static-files/static/media/home-logo.b14e3dd7dc63ea1769c6.png
[2022-12-20 06:08:34 +0000] [75] [DEBUG] GET //static-files/static/js/714.c7ed3611.chunk.js
[2022-12-20 06:08:35 +0000] [75] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:35 +0000] [77] [DEBUG] POST //ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:08:35 +0000] [76] [DEBUG] GET //ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:08:35 +0000] [74] [DEBUG] GET //static-files/static/css/547.f3323e81.chunk.css
[2022-12-20 06:08:35 +0000] [76] [DEBUG] POST //ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:08:35 +0000] [76] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:36 +0000] [74] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:36 +0000] [74] [DEBUG] GET //static-files/static/js/547.a604119a.chunk.js
[2022-12-20 06:08:36 +0000] [76] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:36 +0000] [77] [DEBUG] GET //static-files/static/js/869.aae22f22.chunk.js
[2022-12-20 06:08:39 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:10:46 +0000] [76] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:10:47 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search

What component(s) does this bug affect?

  • area/artifacts: Artifact stores and artifact logging
  • area/build: Build and test infrastructure for MLflow
  • area/docs: MLflow documentation pages
  • area/examples: Example code
  • area/model-registry: Model Registry service, APIs, and the fluent client calls for Model Registry
  • area/models: MLmodel format, model serialization/deserialization, flavors
  • area/recipes: Recipes, Recipe APIs, Recipe configs, Recipe Templates
  • area/projects: MLproject format, project running backends
  • area/scoring: MLflow Model server, model deployment tools, Spark UDFs
  • area/server-infra: MLflow Tracking server backend
  • area/tracking: Tracking Service, tracking client APIs, autologging

What interface(s) does this bug affect?

  • area/uiux: Front-end, user experience, plotting, JavaScript, JavaScript dev server
  • area/docker: Docker use across MLflow’s components, such as MLflow Projects and MLflow Models
  • area/sqlalchemy: Use of SQLAlchemy in the Tracking Service or Model Registry
  • area/windows: Windows support

What language(s) does this bug affect?

  • language/r: R APIs and clients
  • language/java: Java APIs and clients
  • language/new: Proposals for new client languages

What integration(s) does this bug affect?

  • integrations/azure: Azure and Azure ML integrations
  • integrations/sagemaker: SageMaker integrations
  • integrations/databricks: Databricks integrations

About this issue

  • Original URL
  • State: open
  • Created 2 years ago
  • Comments: 17 (3 by maintainers)

Most upvoted comments

My issue got fixed by running the server with --gunicorn-opts="--timeout 900" following the comment given in the link