mlflow: [BUG] Mlflow returns error 504 after uploading large files (800MB +). Error with mlflow.log_artifact()
Issues Policy acknowledgement
- I have read and agree to submit bug reports in accordance with the issues policy
Willingness to contribute
Yes. I can contribute a fix for this bug independently.
MLflow version
- Client: 2.0.1
- Tracking server: 2.0.1
System information
OS : Red Hat Enterprise Linux release 8.6 (Ootpa) Python : 3.10.8
Describe the problem
After uploading 800 + MB files it throws 504 error at client
mlflow.log_atifacts() throws error at client if the file size is over 800MB . It succesfully uploads the file with the status finish.But at client end it throws an error 504 as below.
(mlflow_env) [userid@server-dl-login4:~/mlflow-testing] $ python run.py
MLflow version: 2.0.1
2022/12/19 18:03:09 INFO mlflow.tracking.fluent: Experiment with name 'mlflow_2_testing' does not exist. Creating a new experiment.
Tracking URI: https://mlflow-new-deploy.internal.org.cloud/
experiment_id 16
Active run_id: d18f0bd33976488d8fa34bc283c8e2a2
write output
Traceback (most recent call last):
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
return self.urlopen(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
return self.urlopen(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
return self.urlopen(
[Previous line repeated 2 more times]
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 868, in urlopen
retries = retries.increment(method, url, response=response, _pool=self)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/util/retry.py", line 592, in increment
raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='https://mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 166, in http_request
return _get_http_response_with_retries(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 97, in _get_http_response_with_retries
return session.request(method, url, **kwargs)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 556, in send
raise RetryError(e, request=request)
requests.exceptions.RetryError: HTTPSConnectionPool(host='mlflow-new-deploy-https://mlflow-new-deploy.internal.org.cloud/', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/home/userid/mlflow-testing/run.py", line 87, in <module>
mlflow.log_artifact("1.8gbfile")
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/fluent.py", line 778, in log_artifact
MlflowClient().log_artifact(run_id, local_path, artifact_path)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/client.py", line 1002, in log_artifact
self._tracking_client.log_artifact(run_id, local_path, artifact_path)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/_tracking_service/client.py", line 416, in log_artifact
artifact_repo.log_artifact(local_path, artifact_path)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/store/artifact/http_artifact_repo.py", line 25, in log_artifact
resp = http_request(self._host_creds, endpoint, "PUT", data=f)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 184, in http_request
raise MlflowException("API request to %s failed with exception %s" % (url, e))
mlflow.exceptions.MlflowException: API request to https://mlflow-new-deploy.internal.org.cloud/api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile failed with exception HTTPSConnectionPool(host='mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses'))
Tracking information
python run.py
MLflow version: 2.0.1
Tracking URI: https://mlflow-new-deploy.internal.org.com/
experiment_id 17
System information: Linux #1 SMP Mon Jul 18 11:14:02 EDT 2022
Python version: 3.10.8
MLflow version: 2.0.1
MLflow module location: /home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/__init__.py
Tracking URI: https://mlflow-new-deploy.internal.org.com/
Registry URI: https://mlflow-new-deploy.internal.org.com/
Active experiment ID: 17
Active run ID: 3a80930872d24ad0b0f245bc66d039ff
Active run artifact URI: mlflow-artifacts:/17/3a80930872d24ad0b0f245bc66d039ff/artifacts
MLflow environment variables: {
"MLFLOW_TRACKING_INSECURE_TLS": "True"
}
MLflow dependencies: {
"click": "8.1.3",
"cloudpickle": "2.2.0",
"databricks-cli": "0.17.4",
"entrypoints": "0.4",
"gitpython": "3.1.29",
"pyyaml": "6.0",
"protobuf": "4.21.11",
"pytz": "2022.7",
"requests": "2.28.1",
"packaging": "21.3",
"importlib-metadata": "5.2.0",
"sqlparse": "0.4.3",
"alembic": "1.9.0",
"docker": "6.0.0",
"Flask": "2.2.2",
"numpy": "1.23.5",
"scipy": "1.9.3",
"pandas": "1.5.2",
"querystring-parser": "1.2.4",
"sqlalchemy": "1.4.45",
"scikit-learn": "1.2.0",
"pyarrow": "10.0.1",
"shap": "0.41.0",
"markdown": "3.4.1",
"matplotlib": "3.6.2",
"gunicorn": "20.1.0",
"Jinja2": "3.1.2"
}
write output
In case of larger file output freezes at this point and later shows 504 error
==================================
Command :-
mlflow db upgrade "${BACKEND_URI}"; mlflow server --host 0.0.0.0
--backend-store-uri "${BACKEND_URI}" --artifacts-destination
"${ARTIFACT_ROOT}/mlartifacts/" --serve-artifacts --gunicorn-opts
"--log-level debug --timeout 8000 --graceful-timeout 75
--keep-alive 3600" --expose-prometheus "/mlflow/metrics"
Keep-alive and timeout is added as part of troubleshooting
Code to reproduce issue
Code :-
import os
import mlflow
from mlflow.tracking import MlflowClient
from random import random, randint
from mlflow import log_metric, log_param, log_artifacts
from mlflow.store.artifact.runs_artifact_repo import RunsArtifactRepository
from mlflow.tracking import MlflowClient
from mlflow.store.artifact.mlflow_artifacts_repo import MlflowArtifactsRepository
from mlflow.store.tracking import DEFAULT_ARTIFACTS_URI
import boto3
import requests
import sys
mlflow.set_tracking_uri('https://mlflow-new-deploy.internal.org.cloud/')
client = MlflowClient()
experiment_name= 'mlflow_2.0.1_testing'
print("MLflow version:", mlflow.__version__)
mlflow.set_experiment(experiment_name)
print("Tracking URI:", mlflow.get_tracking_uri())
experiment_id = client.get_experiment_by_name(experiment_name).experiment_id
print("experiment_id",experiment_id)
experiment = mlflow.get_experiment(experiment_id)
mlflow.start_run()
mlflow.doctor()
mlflow.log_metric("foo", 2)
mlflow.log_metric("a", 4)
print ("write output")
mlflow.log_artifact("largefile_latest")
print("Artifact URI:",mlflow.get_artifact_uri())
print("Artifact Location: {}".format(experiment.artifact_location))
artifact_uri = mlflow.get_artifact_uri()
mlflow.end_run()
Stack trace
(mlflow_env) [userid@server-dl-login4:~/mlflow-testing] $ python run.py
MLflow version: 2.0.1
2022/12/19 18:03:09 INFO mlflow.tracking.fluent: Experiment with name 'mlflow_2_testing' does not exist. Creating a new experiment.
Tracking URI: https://mlflow-new-deploy.internal.org.cloud/
experiment_id 16
Active run_id: d18f0bd33976488d8fa34bc283c8e2a2
write output
Traceback (most recent call last):
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 489, in send
resp = conn.urlopen(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
return self.urlopen(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
return self.urlopen(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 878, in urlopen
return self.urlopen(
[Previous line repeated 2 more times]
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/connectionpool.py", line 868, in urlopen
retries = retries.increment(method, url, response=response, _pool=self)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/urllib3/util/retry.py", line 592, in increment
raise MaxRetryError(_pool, url, error or ResponseError(cause))
urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='https://mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 166, in http_request
return _get_http_response_with_retries(
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 97, in _get_http_response_with_retries
return session.request(method, url, **kwargs)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 587, in request
resp = self.send(prep, **send_kwargs)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/sessions.py", line 701, in send
r = adapter.send(request, **kwargs)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/requests/adapters.py", line 556, in send
raise RetryError(e, request=request)
requests.exceptions.RetryError: HTTPSConnectionPool(host='mlflow-new-deploy-https://mlflow-new-deploy.internal.org.cloud/', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses')) During handling of the above exception, another exception occurred: Traceback (most recent call last):
File "/home/userid/mlflow-testing/run.py", line 87, in <module>
mlflow.log_artifact("1.8gbfile")
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/fluent.py", line 778, in log_artifact
MlflowClient().log_artifact(run_id, local_path, artifact_path)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/client.py", line 1002, in log_artifact
self._tracking_client.log_artifact(run_id, local_path, artifact_path)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/tracking/_tracking_service/client.py", line 416, in log_artifact
artifact_repo.log_artifact(local_path, artifact_path)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/store/artifact/http_artifact_repo.py", line 25, in log_artifact
resp = http_request(self._host_creds, endpoint, "PUT", data=f)
File "/home/userid/.conda/envs/mlflow_env/lib/python3.10/site-packages/mlflow/utils/rest_utils.py", line 184, in http_request
raise MlflowException("API request to %s failed with exception %s" % (url, e))
mlflow.exceptions.MlflowException: API request to https://mlflow-new-deploy.internal.org.cloud/api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile failed with exception HTTPSConnectionPool(host='mlflow-new-deploy.internal.org.cloud', port=443): Max retries exceeded with url: /api/2.0/mlflow-artifacts/artifacts/16/d18f0bd33976488d8fa34bc283c8e2a2/artifacts/1.8gbfile (Caused by ResponseError('too many 504 error responses'))
Other info / logs
2022/12/20 05:49:18 INFO mlflow.store.db.utils: Updating database tables
INFO [alembic.runtime.migration] Context impl MSSQLImpl.
INFO [alembic.runtime.migration] Will assume transactional DDL.
[2022-12-20 05:49:22 +0000] [73] [DEBUG] Current configuration:
config: ./gunicorn.conf.py
wsgi_app: None
bind: ['0.0.0.0:5000']
backlog: 2048
workers: 4
worker_class: sync
threads: 1
worker_connections: 1000
max_requests: 0
max_requests_jitter: 0
timeout: 8000
graceful_timeout: 75
keepalive: 3600
limit_request_line: 4094
limit_request_fields: 100
limit_request_field_size: 8190
reload: False
reload_engine: auto
reload_extra_files: []
spew: False
check_config: False
print_config: False
preload_app: False
sendfile: None
reuse_port: False
chdir: /
daemon: False
raw_env: []
pidfile: None
worker_tmp_dir: None
user: 1002930000
group: 0
umask: 0
initgroups: False
tmp_upload_dir: None
secure_scheme_headers: {'X-FORWARDED-PROTOCOL': 'ssl', 'X-FORWARDED-PROTO': 'https', 'X-FORWARDED-SSL': 'on'}
forwarded_allow_ips: ['127.0.0.1']
accesslog: None
disable_redirect_access_to_syslog: False
access_log_format: %(h)s %(l)s %(u)s %(t)s "%(r)s" %(s)s %(b)s "%(f)s" "%(a)s"
errorlog: -
loglevel: debug
capture_output: False
logger_class: gunicorn.glogging.Logger
logconfig: None
logconfig_dict: {}
syslog_addr: udp://localhost:514
syslog: False
syslog_prefix: None
syslog_facility: user
enable_stdio_inheritance: False
statsd_host: None
dogstatsd_tags:
statsd_prefix:
proc_name: None
default_proc_name: mlflow.server:app
pythonpath: None
paste: None
on_starting: <function OnStarting.on_starting at 0x7f7e3a55a680>
on_reload: <function OnReload.on_reload at 0x7f7e3a55a7a0>
when_ready: <function WhenReady.when_ready at 0x7f7e3a55a8c0>
pre_fork: <function Prefork.pre_fork at 0x7f7e3a55a9e0>
post_fork: <function Postfork.post_fork at 0x7f7e3a55ab00>
post_worker_init: <function PostWorkerInit.post_worker_init at 0x7f7e3a55ac20>
worker_int: <function WorkerInt.worker_int at 0x7f7e3a55ad40>
worker_abort: <function WorkerAbort.worker_abort at 0x7f7e3a55ae60>
pre_exec: <function PreExec.pre_exec at 0x7f7e3a55af80>
pre_request: <function PreRequest.pre_request at 0x7f7e3a55b0a0>
post_request: <function PostRequest.post_request at 0x7f7e3a55b130>
child_exit: <function ChildExit.child_exit at 0x7f7e3a55b250>
worker_exit: <function WorkerExit.worker_exit at 0x7f7e3a55b370>
nworkers_changed: <function NumWorkersChanged.nworkers_changed at 0x7f7e3a55b490>
on_exit: <function OnExit.on_exit at 0x7f7e3a55b5b0>
proxy_protocol: False
proxy_allow_ips: ['127.0.0.1']
keyfile: None
certfile: None
ssl_version: 2
cert_reqs: 0
ca_certs: None
suppress_ragged_eofs: True
do_handshake_on_connect: False
ciphers: None
raw_paste_global_conf: []
strip_header_spaces: False
[2022-12-20 05:49:22 +0000] [73] [INFO] Starting gunicorn 20.1.0
[2022-12-20 05:49:22 +0000] [73] [DEBUG] Arbiter booted
[2022-12-20 05:49:22 +0000] [73] [INFO] Listening at: http://0.0.0.0:5000 (73)
[2022-12-20 05:49:22 +0000] [73] [INFO] Using worker: sync
[2022-12-20 05:49:22 +0000] [74] [INFO] Booting worker with pid: 74
[2022-12-20 05:49:22 +0000] [75] [INFO] Booting worker with pid: 75
[2022-12-20 05:49:22 +0000] [76] [INFO] Booting worker with pid: 76
[2022-12-20 05:49:22 +0000] [77] [INFO] Booting worker with pid: 77
[2022-12-20 05:49:22 +0000] [73] [DEBUG] 4 workers
[2022-12-20 05:49:33 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:57:30 +0000] [77] [DEBUG] GET /api/2.0/mlflow/experiments/get-by-name
[2022-12-20 05:57:30 +0000] [77] [DEBUG] GET /api/2.0/mlflow/experiments/get-by-name
[2022-12-20 05:57:30 +0000] [77] [DEBUG] GET /api/2.0/mlflow/experiments/get
[2022-12-20 05:57:30 +0000] [74] [DEBUG] POST /api/2.0/mlflow/runs/create
[2022-12-20 05:57:30 +0000] [74] [DEBUG] POST /api/2.0/mlflow/runs/log-metric
[2022-12-20 05:57:30 +0000] [74] [DEBUG] POST /api/2.0/mlflow/runs/log-metric
[2022-12-20 05:57:30 +0000] [74] [DEBUG] GET /api/2.0/mlflow/runs/get
[2022-12-20 05:57:30 +0000] [74] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 05:57:38 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:57:47 +0000] [77] [DEBUG] GET /static-files/static/media/fontawesome-webfont.20fd1704ea223900efa9.woff2
[2022-12-20 05:57:49 +0000] [76] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 05:57:49 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:57:49 +0000] [77] [DEBUG] GET /static-files/static/js/547.a604119a.chunk.js
[2022-12-20 05:57:57 +0000] [76] [DEBUG] GET /static-files/static/media/laptop.f3a6b3016fbf319305f629fcbcf937a9.svg
[2022-12-20 05:58:16 +0000] [76] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 05:58:24 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:58:45 +0000] [74] [DEBUG] Ignoring connection reset
[2022-12-20 05:59:25 +0000] [75] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 05:59:28 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:59:38 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 05:59:40 +0000] [76] [DEBUG] Ignoring connection reset
[2022-12-20 06:00:28 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:00:28 +0000] [76] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 06:00:38 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:00:41 +0000] [75] [DEBUG] Ignoring connection reset
[2022-12-20 06:00:42 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:01:40 +0000] [76] [DEBUG] Ignoring connection reset
[2022-12-20 06:01:40 +0000] [77] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 06:01:42 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:46 +0000] [77] [DEBUG] Ignoring connection reset
[2022-12-20 06:02:49 +0000] [77] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/search
[2022-12-20 06:02:51 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:51 +0000] [75] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:02:51 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:52 +0000] [77] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:02:53 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:02:54 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:03:00 +0000] [75] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:03:00 +0000] [76] [DEBUG] PUT /api/2.0/mlflow-artifacts/artifacts/17/acbc4f3ff7ec4fd3a1fc35c0f91d317c/artifacts/1.8gbfile
[2022-12-20 06:03:01 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:03:49 +0000] [77] [DEBUG] POST /api/2.0/mlflow/runs/update
[2022-12-20 06:03:54 +0000] [74] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:04:02 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:04:09 +0000] [77] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:04:12 +0000] [76] [DEBUG] Ignoring connection reset
[2022-12-20 06:04:16 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:08:26 +0000] [77] [DEBUG] GET //
[2022-12-20 06:08:26 +0000] [75] [DEBUG] GET //static-files/static/css/main.3b6f4584.css
[2022-12-20 06:08:26 +0000] [77] [DEBUG] GET //static-files/static/js/main.6125589f.js
[2022-12-20 06:08:34 +0000] [77] [DEBUG] GET //ajax-api/2.0/mlflow/experiments/search
[2022-12-20 06:08:34 +0000] [74] [DEBUG] GET //static-files/static/media/home-logo.b14e3dd7dc63ea1769c6.png
[2022-12-20 06:08:34 +0000] [75] [DEBUG] GET //static-files/static/js/714.c7ed3611.chunk.js
[2022-12-20 06:08:35 +0000] [75] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:35 +0000] [77] [DEBUG] POST //ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:08:35 +0000] [76] [DEBUG] GET //ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:08:35 +0000] [74] [DEBUG] GET //static-files/static/css/547.f3323e81.chunk.css
[2022-12-20 06:08:35 +0000] [76] [DEBUG] POST //ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:08:35 +0000] [76] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:36 +0000] [74] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:36 +0000] [74] [DEBUG] GET //static-files/static/js/547.a604119a.chunk.js
[2022-12-20 06:08:36 +0000] [76] [DEBUG] GET //static-files/favicon.ico
[2022-12-20 06:08:36 +0000] [77] [DEBUG] GET //static-files/static/js/869.aae22f22.chunk.js
[2022-12-20 06:08:39 +0000] [75] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
[2022-12-20 06:10:46 +0000] [76] [DEBUG] GET /ajax-api/2.0/mlflow/experiments/get
[2022-12-20 06:10:47 +0000] [76] [DEBUG] POST /ajax-api/2.0/mlflow/runs/search
What component(s) does this bug affect?
-
area/artifacts: Artifact stores and artifact logging -
area/build: Build and test infrastructure for MLflow -
area/docs: MLflow documentation pages -
area/examples: Example code -
area/model-registry: Model Registry service, APIs, and the fluent client calls for Model Registry -
area/models: MLmodel format, model serialization/deserialization, flavors -
area/recipes: Recipes, Recipe APIs, Recipe configs, Recipe Templates -
area/projects: MLproject format, project running backends -
area/scoring: MLflow Model server, model deployment tools, Spark UDFs -
area/server-infra: MLflow Tracking server backend -
area/tracking: Tracking Service, tracking client APIs, autologging
What interface(s) does this bug affect?
-
area/uiux: Front-end, user experience, plotting, JavaScript, JavaScript dev server -
area/docker: Docker use across MLflow’s components, such as MLflow Projects and MLflow Models -
area/sqlalchemy: Use of SQLAlchemy in the Tracking Service or Model Registry -
area/windows: Windows support
What language(s) does this bug affect?
-
language/r: R APIs and clients -
language/java: Java APIs and clients -
language/new: Proposals for new client languages
What integration(s) does this bug affect?
-
integrations/azure: Azure and Azure ML integrations -
integrations/sagemaker: SageMaker integrations -
integrations/databricks: Databricks integrations
About this issue
- Original URL
- State: open
- Created 2 years ago
- Comments: 17 (3 by maintainers)
My issue got fixed by running the server with
--gunicorn-opts="--timeout 900"following the comment given in the link