DeepStream-Yolo: what is "Assertion `0' failed." Error ?
Ihaven’t been able to solve this problem for 2 months … please help
deepstream-app -c deepstream_app_config.txt
Using winsys: x11 ERROR: Deserialize engine failed because file path: /home/iisl/Desktop/deepstream-6.0/sources/DeepStream-Yolo-master/model_b1_gpu0_fp32.engine open error 0:00:04.043230373 9789 0x2d12ae40 WARN nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::deserializeEngineAndBackend() <nvdsinfer_context_impl.cpp:1889> [UID = 1]: deserialize engine from file :/home/iisl/Desktop/deepstream-6.0/sources/DeepStream-Yolo-master/model_b1_gpu0_fp32.engine failed 0:00:04.043411262 9789 0x2d12ae40 WARN nvinfer gstnvinfer.cpp:635:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Warning from NvDsInferContextImpl::generateBackendContext() <nvdsinfer_context_impl.cpp:1996> [UID = 1]: deserialize backend context from engine from file :/home/iisl/Desktop/deepstream-6.0/sources/DeepStream-Yolo-master/model_b1_gpu0_fp32.engine failed, try rebuild 0:00:04.043444232 9789 0x2d12ae40 INFO nvinfer gstnvinfer.cpp:638:gst_nvinfer_logger:<primary_gie> NvDsInferContext[UID 1]: Info from NvDsInferContextImpl::buildModel() <nvdsinfer_context_impl.cpp:1914> [UID = 1]: Trying to create engine from model files
Loading pre-trained weights Loading weights of yolov5n complete Total weights read: 5256618 Building YOLO network
layer input output weightPtr
(0) conv_silu 3 x 640 x 640 16 x 320 x 320 1792
(1) conv_silu 16 x 320 x 320 32 x 160 x 160 6528
(2) conv_silu 32 x 160 x 160 16 x 160 x 160 7104
(3) route - 32 x 160 x 160 7104
(4) conv_silu 32 x 160 x 160 16 x 160 x 160 7680
(5) conv_silu 16 x 160 x 160 16 x 160 x 160 8000
(6) conv_silu 16 x 160 x 160 16 x 160 x 160 10368
(7) shortcut_linear: 4 - 16 x 160 x 160 -
(8) route - 32 x 160 x 160 10368
(9) conv_silu 32 x 160 x 160 32 x 160 x 160 11520
(10) conv_silu 32 x 160 x 160 64 x 80 x 80 30208
(11) conv_silu 64 x 80 x 80 32 x 80 x 80 32384
(12) route - 64 x 80 x 80 32384
(13) conv_silu 64 x 80 x 80 32 x 80 x 80 34560
(14) conv_silu 32 x 80 x 80 32 x 80 x 80 35712
(15) conv_silu 32 x 80 x 80 32 x 80 x 80 45056
(16) shortcut_linear: 13 - 32 x 80 x 80 -
(17) conv_silu 32 x 80 x 80 32 x 80 x 80 46208
(18) conv_silu 32 x 80 x 80 32 x 80 x 80 55552
(19) shortcut_linear: 16 - 32 x 80 x 80 -
(20) route - 64 x 80 x 80 55552
(21) conv_silu 64 x 80 x 80 64 x 80 x 80 59904
(22) conv_silu 64 x 80 x 80 128 x 40 x 40 134144
(23) conv_silu 128 x 40 x 40 64 x 40 x 40 142592
(24) route - 128 x 40 x 40 142592
(25) conv_silu 128 x 40 x 40 64 x 40 x 40 151040
(26) conv_silu 64 x 40 x 40 64 x 40 x 40 155392
(27) conv_silu 64 x 40 x 40 64 x 40 x 40 192512
(28) shortcut_linear: 25 - 64 x 40 x 40 -
(29) conv_silu 64 x 40 x 40 64 x 40 x 40 196864
(30) conv_silu 64 x 40 x 40 64 x 40 x 40 233984
(31) shortcut_linear: 28 - 64 x 40 x 40 -
(32) conv_silu 64 x 40 x 40 64 x 40 x 40 238336
(33) conv_silu 64 x 40 x 40 64 x 40 x 40 275456
(34) shortcut_linear: 31 - 64 x 40 x 40 -
(35) route - 128 x 40 x 40 275456
(36) conv_silu 128 x 40 x 40 128 x 40 x 40 292352
(37) conv_silu 128 x 40 x 40 192 x 20 x 20 514304
(38) conv_silu 192 x 20 x 20 96 x 20 x 20 533120
(39) route - 192 x 20 x 20 533120
(40) conv_silu 192 x 20 x 20 96 x 20 x 20 551936
(41) conv_silu 96 x 20 x 20 96 x 20 x 20 561536
(42) conv_silu 96 x 20 x 20 96 x 20 x 20 644864
(43) shortcut_linear: 40 - 96 x 20 x 20 -
(44) route - 192 x 20 x 20 644864
(45) conv_silu 192 x 20 x 20 192 x 20 x 20 682496
(46) conv_silu 192 x 20 x 20 256 x 10 x 10 1125888
(47) conv_silu 256 x 10 x 10 128 x 10 x 10 1159168
(48) route - 256 x 10 x 10 1159168
(49) conv_silu 256 x 10 x 10 128 x 10 x 10 1192448
(50) conv_silu 128 x 10 x 10 128 x 10 x 10 1209344
(51) conv_silu 128 x 10 x 10 128 x 10 x 10 1357312
(52) shortcut_linear: 49 - 128 x 10 x 10 -
(53) route - 256 x 10 x 10 1357312
(54) conv_silu 256 x 10 x 10 256 x 10 x 10 1423872
(55) conv_silu 256 x 10 x 10 128 x 10 x 10 1457152
(56) maxpool 128 x 10 x 10 128 x 10 x 10 1457152
(57) maxpool 128 x 10 x 10 128 x 10 x 10 1457152
(58) maxpool 128 x 10 x 10 128 x 10 x 10 1457152
(59) route - 512 x 10 x 10 1457152
(60) conv_silu 512 x 10 x 10 256 x 10 x 10 1589248
(61) conv_silu 256 x 10 x 10 192 x 10 x 10 1639168
(62) upsample 192 x 10 x 10 192 x 20 x 20 -
(63) route - 384 x 20 x 20 1639168
(64) conv_silu 384 x 20 x 20 96 x 20 x 20 1676416
(65) route - 384 x 20 x 20 1676416
(66) conv_silu 384 x 20 x 20 96 x 20 x 20 1713664
(67) conv_silu 96 x 20 x 20 96 x 20 x 20 1723264
(68) conv_silu 96 x 20 x 20 96 x 20 x 20 1806592
(69) route - 192 x 20 x 20 1806592
(70) conv_silu 192 x 20 x 20 192 x 20 x 20 1844224
(71) conv_silu 192 x 20 x 20 128 x 20 x 20 1869312
(72) upsample 128 x 20 x 20 128 x 40 x 40 -
(73) route - 256 x 40 x 40 1869312
(74) conv_silu 256 x 40 x 40 64 x 40 x 40 1885952
(75) route - 256 x 40 x 40 1885952
(76) conv_silu 256 x 40 x 40 64 x 40 x 40 1902592
(77) conv_silu 64 x 40 x 40 64 x 40 x 40 1906944
(78) conv_silu 64 x 40 x 40 64 x 40 x 40 1944064
(79) route - 128 x 40 x 40 1944064
(80) conv_silu 128 x 40 x 40 128 x 40 x 40 1960960
(81) conv_silu 128 x 40 x 40 64 x 40 x 40 1969408
(82) upsample 64 x 40 x 40 64 x 80 x 80 -
(83) route - 128 x 80 x 80 1969408
(84) conv_silu 128 x 80 x 80 32 x 80 x 80 1973632
(85) route - 128 x 80 x 80 1973632
(86) conv_silu 128 x 80 x 80 32 x 80 x 80 1977856
(87) conv_silu 32 x 80 x 80 32 x 80 x 80 1979008
(88) conv_silu 32 x 80 x 80 32 x 80 x 80 1988352
(89) route - 64 x 80 x 80 1988352
(90) conv_silu 64 x 80 x 80 64 x 80 x 80 1992704
(91) conv_silu 64 x 80 x 80 64 x 40 x 40 2029824
(92) route - 128 x 40 x 40 2029824
(93) conv_silu 128 x 40 x 40 64 x 40 x 40 2038272
(94) route - 128 x 40 x 40 2038272
(95) conv_silu 128 x 40 x 40 64 x 40 x 40 2046720
(96) conv_silu 64 x 40 x 40 64 x 40 x 40 2051072
(97) conv_silu 64 x 40 x 40 64 x 40 x 40 2088192
(98) route - 128 x 40 x 40 2088192
(99) conv_silu 128 x 40 x 40 128 x 40 x 40 2105088
(100) conv_silu 128 x 40 x 40 128 x 20 x 20 2253056
(101) route - 256 x 20 x 20 2253056
(102) conv_silu 256 x 20 x 20 96 x 20 x 20 2278016
(103) route - 256 x 20 x 20 2278016
(104) conv_silu 256 x 20 x 20 96 x 20 x 20 2302976
(105) conv_silu 96 x 20 x 20 96 x 20 x 20 2312576
(106) conv_silu 96 x 20 x 20 96 x 20 x 20 2395904
(107) route - 192 x 20 x 20 2395904
(108) conv_silu 192 x 20 x 20 192 x 20 x 20 2433536
(109) conv_silu 192 x 20 x 20 192 x 10 x 10 2766080
(110) route - 384 x 10 x 10 2766080
(111) conv_silu 384 x 10 x 10 128 x 10 x 10 2815744
(112) route - 384 x 10 x 10 2815744
(113) conv_silu 384 x 10 x 10 128 x 10 x 10 2865408
(114) conv_silu 128 x 10 x 10 128 x 10 x 10 2882304
(115) conv_silu 128 x 10 x 10 128 x 10 x 10 3030272
(116) route - 256 x 10 x 10 3030272
(117) conv_silu 256 x 10 x 10 256 x 10 x 10 3096832
(118) route - 64 x 80 x 80 3096832
(119) conv_logistic 64 x 80 x 80 255 x 80 x 80 3113407
(120) yolo 255 x 80 x 80 255 x 80 x 80 3113407
(121) route - 128 x 40 x 40 3113407
(122) conv_logistic 128 x 40 x 40 255 x 40 x 40 3146302
(123) yolo 255 x 40 x 40 255 x 40 x 40 3146302
(124) route - 192 x 20 x 20 3146302
(125) conv_logistic 192 x 20 x 20 255 x 20 x 20 3195517
(126) yolo 255 x 20 x 20 255 x 20 x 20 3195517
(127) route - 256 x 10 x 10 3195517
(128) conv_logistic 256 x 10 x 10 255 x 10 x 10 3261052
(129) yolo 255 x 10 x 10 255 x 10 x 10 3261052
Number of unused weights left: 1995566
deepstream-app: yolo.cpp:422: NvDsInferStatus Yolo::buildYoloNetwork(std::vector<float>&, nvinfer1::INetworkDefinition&): Assertion `0’ failed.
Aborted (core dumped)
About this issue
- Original URL
- State: closed
- Created 2 years ago
- Comments: 47 (19 by maintainers)
The issue was fixed. I was using the yolov5s.yaml file in /models but in /models/hub there was a yolov5s6.yaml, my issue was fixed after I used that yaml.
@Krokos11, the yaml file should be one of them (according to your model): https://github.com/ultralytics/yolov5/tree/master/models
Thanks, it worked
@indraksha, It’s already supported.
It’s working now.
I made an error, even though I pulled the latest repo version, the downloaded pretrained checkpoint was still on v5.0 version, so I was loading the old v5.0 model when training.
Now it is working perfectly, thank you for the amazing work!