keras: Error when load combined mobile-net model
I used code below to combine 2 mobile-net model. After combine i save model as combined.hdf5. Keras version: 2.2.0 Using TensorFlow backend. TensorFlow version: 1.8.0
model_A = load_model('mobilenet_A.hdf5', custom_objects={'relu6': mobilenet.relu6})
model_B = load_model('mobilenet_B.hdf5', custom_objects={'relu6': mobilenet.relu6})
inputs = Input(shape=(224, 224, 3))
pred_A = model_A(inputs)
pred_B = model_B(inputs)
pred_average = keras.layers.Average()([pred_A, pred_B])
model_combined = Model(inputs=inputs, outputs=pred_average)
model_combined.save('combined_test.hdf5')
model_x = load_model('combined_test.hdf5', custom_objects={'relu6': mobilenet.relu6})
When i load saved model, i get error below:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-3df9104863a8> in <module>()
1 model_x = load_model('combined_test.hdf5',
----> 2 custom_objects={'relu6': mobilenet.relu6})
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in load_model(filepath, custom_objects, compile)
262
263 # set weights
--> 264 load_weights_from_hdf5_group(f['model_weights'], model.layers)
265
266 if compile:
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in load_weights_from_hdf5_group(f, layers, reshape)
914 original_keras_version,
915 original_backend,
--> 916 reshape=reshape)
917 if len(weight_values) != len(symbolic_weights):
918 raise ValueError('Layer #' + str(k) +
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in preprocess_weights_for_loading(layer, weights, original_keras_version, original_backend, reshape)
555 weights = convert_nested_time_distributed(weights)
556 elif layer.__class__.__name__ in ['Model', 'Sequential']:
--> 557 weights = convert_nested_model(weights)
558
559 if original_keras_version == '1':
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in convert_nested_model(weights)
543 weights=weights[:num_weights],
544 original_keras_version=original_keras_version,
--> 545 original_backend=original_backend))
546 weights = weights[num_weights:]
547 return new_weights
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in preprocess_weights_for_loading(layer, weights, original_keras_version, original_backend, reshape)
555 weights = convert_nested_time_distributed(weights)
556 elif layer.__class__.__name__ in ['Model', 'Sequential']:
--> 557 weights = convert_nested_model(weights)
558
559 if original_keras_version == '1':
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in convert_nested_model(weights)
531 weights=weights[:num_weights],
532 original_keras_version=original_keras_version,
--> 533 original_backend=original_backend))
534 weights = weights[num_weights:]
535
~/virtualenvs/AILab/lib/python3.5/site-packages/keras/engine/saving.py in preprocess_weights_for_loading(layer, weights, original_keras_version, original_backend, reshape)
673 weights[0] = np.reshape(weights[0], layer_weights_shape)
674 elif layer_weights_shape != weights[0].shape:
--> 675 weights[0] = np.transpose(weights[0], (3, 2, 0, 1))
676 if layer.__class__.__name__ == 'ConvLSTM2D':
677 weights[1] = np.transpose(weights[1], (3, 2, 0, 1))
~/virtualenvs/AILab/lib/python3.5/site-packages/numpy/core/fromnumeric.py in transpose(a, axes)
548
549 """
--> 550 return _wrapfunc(a, 'transpose', axes)
551
552
~/virtualenvs/AILab/lib/python3.5/site-packages/numpy/core/fromnumeric.py in _wrapfunc(obj, method, *args, **kwds)
55 def _wrapfunc(obj, method, *args, **kwds):
56 try:
---> 57 return getattr(obj, method)(*args, **kwds)
58
59 # An AttributeError occurs if the object does not have
ValueError: axes don't match array
About this issue
- Original URL
- State: closed
- Created 6 years ago
- Reactions: 1
- Comments: 17 (1 by maintainers)
I believe this is related to #10784. When you have a nested model, there is a bug in loading trainable and untrainable weights (from BatchNorm layers?).
I just ran into this issue. I have a Siamese model that consists of two branch models and a head model. If I use a custom branch model that doesn’t contain BatchNorm, saving and loading the model works fine. But if I use something like ResNet18, I can’t load saved models because “axes don’t match array”.