faster-rcnn.pytorch: Pytorch 1.0 branch ImportError: torch.utils.ffi is deprecated

I followed the instructions for Pytorch 1.0: switched to pytorch-1.0 branch, went to lib and ran python setup.py build develop. Install succeeded with no errors.

However, when I try to import roi_pool in the Python prompt, I get “torch.utils.ffi is deprecated” error. Isn’t this supposed to be fixed in the pytorch-1.0 branch?

Python 3.7.2 (default, Dec 29 2018, 06:19:36) 
[GCC 7.3.0] :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from model.roi_pooling.modules import roi_pool
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/home/remoteuser/faster-rcnn.pytorch/lib/model/roi_pooling/modules/roi_pool.py", line 2, in <module>
    from ..functions.roi_pool import RoIPoolFunction
  File "/home/remoteuser/faster-rcnn.pytorch/lib/model/roi_pooling/functions/roi_pool.py", line 3, in <module>
    from .._ext import roi_pooling
  File "/home/remoteuser/faster-rcnn.pytorch/lib/model/roi_pooling/_ext/roi_pooling/__init__.py", line 2, in <module>
    from torch.utils.ffi import _wrap_function
  File "/home/remoteuser/.miniconda3/envs/outfit/lib/python3.7/site-packages/torch/utils/ffi/__init__.py", line 1, in <module>
    raise ImportError("torch.utils.ffi is deprecated. Please use cpp extensions instead.")
ImportError: torch.utils.ffi is deprecated. Please use cpp extensions instead.

Thank you!

About this issue

  • Original URL
  • State: closed
  • Created 5 years ago
  • Reactions: 6
  • Comments: 22

Most upvoted comments

@lzxzy confirmed it works. using git checkout pytorch-1.0 will fix your problem.

I solved by adding the source code of torch.utils.ffi to my project without changing my pytorch version.(I use torch 1.4.0). For example, save the following code to ffiext.py, then you can replace from torch.utils.ffi import _wrap_function with from ffiext import _wrap_function. You can also find the following source code from ‘https://s0pytorch0org.icopy.site/docs/0.4.1/_modules/torch/utils/ffi.html’.

import os
import glob
import tempfile
import shutil
from functools import wraps, reduce
from string import Template
import torch
import torch.cuda
from torch._utils import _accumulate

try:
	import cffi
except ImportError:
	raise ImportError("torch.utils.ffi requires the cffi package")


if cffi.__version_info__ < (1, 4, 0):
	raise ImportError("torch.utils.ffi requires cffi version >= 1.4, but "
					  "got " + '.'.join(map(str, cffi.__version_info__)))


def _generate_typedefs():
	typedefs = []
	for t in ['Double', 'Float', 'Long', 'Int', 'Short', 'Char', 'Byte']:
		for lib in ['TH', 'THCuda']:
			for kind in ['Tensor', 'Storage']:
				python_name = t + kind
				if t == 'Float' and lib == 'THCuda':
					th_name = 'THCuda' + kind
				else:
					th_name = lib + t + kind
				th_struct = 'struct ' + th_name

				typedefs += ['typedef {} {};'.format(th_struct, th_name)]
				# We have to assemble a string here, because we're going to
				# do this lookup based on tensor.type(), which returns a
				# string (not a type object, as this code was before)
				python_module = 'torch.cuda' if lib == 'THCuda' else 'torch'
				python_class = python_module + '.' + python_name
				_cffi_to_torch[th_struct] = python_class
				_torch_to_cffi[python_class] = th_struct
	return '\n'.join(typedefs) + '\n'
_cffi_to_torch = {}
_torch_to_cffi = {}
_typedefs = _generate_typedefs()


PY_MODULE_TEMPLATE = Template("""
from torch.utils.ffi import _wrap_function
from .$cffi_wrapper_name import lib as _lib, ffi as _ffi

__all__ = []
def _import_symbols(locals):
	for symbol in dir(_lib):
		fn = getattr(_lib, symbol)
		if callable(fn):
			locals[symbol] = _wrap_function(fn, _ffi)
		else:
			locals[symbol] = fn
		__all__.append(symbol)

_import_symbols(locals())
""")


def _setup_wrapper(with_cuda):
	here = os.path.abspath(os.path.dirname(__file__))
	lib_dir = os.path.join(here, '..', '..', 'lib')
	include_dirs = [
		os.path.join(lib_dir, 'include'),
		os.path.join(lib_dir, 'include', 'TH'),
	]

	wrapper_source = '#include <TH/TH.h>\n'
	if with_cuda:
		import torch.cuda
		wrapper_source += '#include <THC/THC.h>\n'
		if os.sys.platform == 'win32':
			cuda_include_dirs = glob.glob(os.getenv('CUDA_PATH', '') + '/include')
			cuda_include_dirs += glob.glob(os.getenv('NVTOOLSEXT_PATH', '') + '/include')
		else:
			cuda_include_dirs = glob.glob('/usr/local/cuda/include')
			cuda_include_dirs += glob.glob('/Developer/NVIDIA/CUDA-*/include')
		include_dirs.append(os.path.join(lib_dir, 'include', 'THC'))
		include_dirs.extend(cuda_include_dirs)
	return wrapper_source, include_dirs


def _create_module_dir(base_path, fullname):
	module, _, name = fullname.rpartition('.')
	if not module:
		target_dir = name
	else:
		target_dir = reduce(os.path.join, fullname.split('.'))
	target_dir = os.path.join(base_path, target_dir)
	try:
		os.makedirs(target_dir)
	except os.error:
		pass
	for dirname in _accumulate(fullname.split('.'), os.path.join):
		init_file = os.path.join(base_path, dirname, '__init__.py')
		open(init_file, 'a').close()  # Create file if it doesn't exist yet
	return name, target_dir


def _build_extension(ffi, cffi_wrapper_name, target_dir, verbose):
	try:
		tmpdir = tempfile.mkdtemp()
		ext_suf = '.pyd' if os.sys.platform == 'win32' else '.so'
		libname = cffi_wrapper_name + ext_suf
		outfile = ffi.compile(tmpdir=tmpdir, verbose=verbose, target=libname)
		shutil.copy(outfile, os.path.join(target_dir, libname))
	finally:
		shutil.rmtree(tmpdir)


def _make_python_wrapper(name, cffi_wrapper_name, target_dir):
	py_source = PY_MODULE_TEMPLATE.substitute(name=name,
											  cffi_wrapper_name=cffi_wrapper_name)
	with open(os.path.join(target_dir, '__init__.py'), 'w') as f:
		f.write(py_source)


def create_extension(name, headers, sources, verbose=True, with_cuda=False,
					 package=False, relative_to='.', **kwargs):
	base_path = os.path.abspath(os.path.dirname(relative_to))
	name_suffix, target_dir = _create_module_dir(base_path, name)
	if not package:
		cffi_wrapper_name = '_' + name_suffix
	else:
		cffi_wrapper_name = (name.rpartition('.')[0] +
							 '.{0}._{0}'.format(name_suffix))

	wrapper_source, include_dirs = _setup_wrapper(with_cuda)
	include_dirs.extend(kwargs.pop('include_dirs', []))

	if os.sys.platform == 'win32':
		library_dirs = glob.glob(os.getenv('CUDA_PATH', '') + '/lib/x64')
		library_dirs += glob.glob(os.getenv('NVTOOLSEXT_PATH', '') + '/lib/x64')

		here = os.path.abspath(os.path.dirname(__file__))
		lib_dir = os.path.join(here, '..', '..', 'lib')

		library_dirs.append(os.path.join(lib_dir))
	else:
		library_dirs = []
	library_dirs.extend(kwargs.pop('library_dirs', []))

	if isinstance(headers, str):
		headers = [headers]
	all_headers_source = ''
	for header in headers:
		with open(os.path.join(base_path, header), 'r') as f:
			all_headers_source += f.read() + '\n\n'

	ffi = cffi.FFI()
	sources = [os.path.join(base_path, src) for src in sources]
	# NB: TH headers are C99 now
	kwargs['extra_compile_args'] = ['-std=c99'] + kwargs.get('extra_compile_args', [])
	ffi.set_source(cffi_wrapper_name, wrapper_source + all_headers_source,
				   sources=sources,
				   include_dirs=include_dirs,
				   library_dirs=library_dirs, **kwargs)
	ffi.cdef(_typedefs + all_headers_source)

	_make_python_wrapper(name_suffix, '_' + name_suffix, target_dir)

	def build():
		_build_extension(ffi, cffi_wrapper_name, target_dir, verbose)
	ffi.build = build
	return ffi

def _wrap_function(function, ffi):
	@wraps(function)
	def safe_call(*args, **kwargs):
		args = tuple(ffi.cast(_torch_to_cffi.get(arg.type(), 'void') + '*', arg._cdata)
					 if isinstance(arg, torch.Tensor) or torch.is_storage(arg)
					 else arg
					 for arg in args)
		args = (function,) + args
		result = torch._C._safe_call(*args, **kwargs)
		if isinstance(result, ffi.CData):
			typeof = ffi.typeof(result)
			if typeof.kind == 'pointer':
				cdata = int(ffi.cast('uintptr_t', result))
				cname = typeof.item.cname
				if cname in _cffi_to_torch:
					# TODO: Maybe there is a less janky way to eval
					# off of this
					return eval(_cffi_to_torch[cname])(cdata=cdata)
		return result
	return safe_call

Yes, it does work for me. Infact, I have successfully trained my model with the new branch. Ensure that you are on the correct branch with git branch.

@zcunyi After cloning the repo, you need to switch to the Pytorch-1.0 branch via git checkout pytorch-1.0. Then you can proceed with the installation instructions given in the README of pytorch-1.0 branch.

@odellus If you look at the setup script lib/setup.py, it does not call the said file you mentioned. The ROI and NMS files that are used now reside here, source for the same are here. The files you pointed are required for PyTorch < 0.4.1 and have not been deleted from PyTorch 1.0 branch.

Closing this issue since it seems it works for others.

@andrewjong @ericsqxd You need to checkout the pytorch-1.0 branch. The master branch supports Pytorch 0.4.