ivadomed: NotImplementedError: Got , but numpy array, torch tensor, or caffe2 blob name are expected.
Issue description
I’m training a ‘softseg’ network and got this error:
Terminal output
[32m2022-12-20 11:20:54.181[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m122[39m - [1mInitialising model's weights from scratch.
[32m2022-12-20 11:20:56.595[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m138[39m - [1mScheduler parameters: {'name': 'CosineAnnealingLR', 'base_lr': 1e-05, 'max_lr': 0.001}
[32m2022-12-20 11:20:56.597[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m163[39m - [1mSelected Loss: AdapWingLoss
[32m2022-12-20 11:20:56.597[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m164[39m - [1m with the parameters: []
Training: 2%|███▍ | 1/50 [00:00<?, ?it/s]/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/transforms.py:304: RuntimeWarning: invalid value encountered in divide
data_out = (sample - sample.mean()) / sample.std()
[32m2022-12-20 11:22:05.643[39m | [1mINFO [22m | [36mivadomed.training[39m:[36mtrain[39m:[36m238[39m - [1mEpoch 1 training loss: nan. Dice training loss: nan.
Epoch 1 training loss: nan. Dice training loss: nan.
Training: 2%|███▍ | 1/50 [01:45<?, ?it/s]
Traceback (most recent call last):
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/bin/ivadomed", line 33, in <module>
sys.exit(load_entry_point('ivadomed', 'console_scripts', 'ivadomed')())
File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/main.py", line 623, in run_main
run_command(context=context,
File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/main.py", line 457, in run_command
best_training_dice, best_training_loss, best_validation_dice, best_validation_loss = imed_training.train(
File "/home/GRAMES.POLYMTL.CA/p101317/code/ivadomed/ivadomed/training.py", line 304, in train
writer.add_scalars('Validation/Metrics', metrics_dict, epoch)
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/writer.py", line 403, in add_scalars
fw.add_summary(scalar(main_tag, scalar_value),
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/summary.py", line 249, in scalar
scalar = make_np(scalar)
File "/home/GRAMES.POLYMTL.CA/p101317/.conda/envs/ivadomed/lib/python3.8/site-packages/torch/utils/tensorboard/_convert_np.py", line 24, in make_np
raise NotImplementedError(
NotImplementedError: Got <class 'NoneType'>, but numpy array, torch tensor, or caffe2 blob name are expected.
config file
{
"command": "train",
"gpu_ids": [
5
],
"path_output": "model_seg_lesion_mp2rage_20221220_112014",
"model_name": "model_seg_lesion_mp2rage",
"debugging": true,
"log_file": "log",
"object_detection_params": {
"object_detection_path": null,
"safety_factor": [
1.0,
1.0,
1.0
],
"gpu_ids": 5,
"path_output": "model_seg_lesion_mp2rage_20221220_112014"
},
"wandb": {
"wandb_api_key": "9095e2bc9e4ab445d478c9c8a81759ae908be8c6",
"project_name": "basel-mp2rage-lesion",
"group_name": "3D",
"run_name": "run-1",
"log_grads_every": 100
},
"loader_parameters": {
"path_data": [
"/home/GRAMES.POLYMTL.CA/p101317/data_nvme_p101317/data_seg_mp2rage_20221217_170634/data_processed_lesionseg"
],
"subject_selection": {
"n": [],
"metadata": [],
"value": []
},
"target_suffix": [
"_lesion-manualHaris"
],
"extensions": [
".nii.gz"
],
"roi_params": {
"suffix": null,
"slice_filter_roi": null
},
"contrast_params": {
"training_validation": [
"UNIT1"
],
"testing": [
"UNIT1"
],
"balance": {}
},
"slice_filter_params": {
"filter_empty_mask": true,
"filter_empty_input": true
},
"patch_filter_params": {
"filter_empty_mask": false,
"filter_empty_input": false
},
"slice_axis": "axial",
"multichannel": false,
"soft_gt": true,
"is_input_dropout": false,
"bids_validate": true
},
"split_dataset": {
"fname_split": null,
"random_seed": 42,
"split_method": "participant_id",
"data_testing": {
"data_type": null,
"data_value": []
},
"balance": null,
"train_fraction": 0.6,
"test_fraction": 0.2
},
"training_parameters": {
"batch_size": 16,
"loss": {
"name": "AdapWingLoss"
},
"training_time": {
"num_epochs": 50,
"early_stopping_patience": 50,
"early_stopping_epsilon": 0.001
},
"scheduler": {
"initial_lr": 0.001,
"lr_scheduler": {
"name": "CosineAnnealingLR",
"base_lr": 1e-05,
"max_lr": 0.001
}
},
"balance_samples": {
"applied": false,
"type": "gt"
},
"mixup_alpha": null,
"transfer_learning": {
"retrain_model": null,
"retrain_fraction": 1.0,
"reset": true
}
},
"default_model": {
"name": "Unet",
"dropout_rate": 0.3,
"bn_momentum": 0.1,
"depth": 3,
"is_2d": true,
"final_activation": "relu"
},
"uncertainty": {
"epistemic": false,
"aleatoric": false,
"n_it": 0
},
"postprocessing": {
"remove_noise": {
"thr": -1
},
"keep_largest": {},
"binarize_prediction": {
"thr": 0.5
},
"uncertainty": {
"thr": -1,
"suffix": "_unc-vox.nii.gz"
},
"fill_holes": {},
"remove_small": {
"unit": "vox",
"thr": 3
}
},
"evaluation_parameters": {
"object_detection_metrics": true,
"target_size": {
"unit": "vox",
"thr": [
20,
100
]
},
"overlap": {
"unit": "vox",
"thr": 3
}
},
"transformation": {
"Resample": {
"hspace": 1,
"wspace": 1,
"dspace": 1
},
"RandomReverse": {
"applied_to": [
"im",
"gt"
],
"dataset_type": [
"training"
]
},
"RandomAffine": {
"degrees": 10,
"scale": [
0.2,
0.2,
0.2
],
"translate": [
0.2,
0.2,
0.2
],
"applied_to": [
"im",
"gt"
],
"dataset_type": [
"training"
]
},
"CenterCrop": {
"size": [
32,
32,
128
]
},
"NormalizeInstance": {
"applied_to": [
"im"
]
}
},
"FiLMedUnet": {
"applied": false,
"metadata": "contrasts",
"film_layers": [
0,
1,
0,
0,
0,
0,
0,
0,
0,
0
]
},
"Modified3DUNet": {
"applied": true,
"length_3D": [
32,
32,
32
],
"stride_3D": [
32,
32,
4
],
"attention": false,
"n_filters": 8
},
"training_sha256": {
"sub-P173_UNIT1.nii.gz": "d7faf510ebc0f77d4bceb61c2fd1e37e7aaf4ea50f55e905ce4ccbaf8085ae2f",
"sub-P057_UNIT1.nii.gz": "29ef9080c42db1979e976ef10fb72cb8e5b35f26f30980719c5efdb8e15997fc",
"sub-P089_UNIT1.nii.gz": "383f3f135f6a4b9fb6c89d4316317f04db135d5add9ce64612f514dfeca3825d",
"sub-P199_UNIT1.nii.gz": "2661ce225413dd659874a3aab63869a9c071e91628e68309c50a628b50a5c49a",
"sub-P001_UNIT1.nii.gz": "275c4ddf275775fa011a44b03e481acc518b49a864d6f8c1d86f803c850009d4",
"sub-P188_UNIT1.nii.gz": "b14c01f6a398edaced39afc4314dee4d90f974348ac3e43fcb145286df9e1612",
"sub-P030_UNIT1.nii.gz": "de196f14aa686741ad4cb2e48f6898848bf6ba9bd5cdb61216f329a503190770",
"sub-P022_UNIT1.nii.gz": "3033d6d6a7b64f0bda62671a2dd5aa8e1ed5690bab7d40bf653c0115416c6e56",
"sub-P040_UNIT1.nii.gz": "df98742eb2ca7d2d0fce70f46b3bd6d3de15c2ba5d537bbebe36353bf90ff2a6",
"sub-P063_UNIT1.nii.gz": "94b59476d65efb78c7e89edf905a0473863c662d0d8445c13e3711003ce69ab9",
"sub-P183_UNIT1.nii.gz": "21817290c565177c048f3203b71a62efa9563c34ab953c11b7ef566a2a87cd5f",
"sub-P068_UNIT1.nii.gz": "a88f72ad61a87c2c0e22276536e8ae2e531f835f2fab485712c4ec63def3d4aa",
"sub-P153_UNIT1.nii.gz": "4dc6af0665ff2eefbf39958531b5f19b839b3adf86f55d07d90928a740529ac6",
"sub-P081_UNIT1.nii.gz": "f52152f37ddb9ab69b43c0b42429003c1dd36355fa2f4c708901e45fed873b88",
"sub-P003_UNIT1.nii.gz": "42b1e26a9ac14dcbf2b9efd0e13a0b9dec5b58aae5b8247aa03a9909bb5c8227",
"sub-P179_UNIT1.nii.gz": "b1d2566e618553f90451bc8e9530260609c76a8a3d13f394f42eab4819165ba4",
"sub-P110_UNIT1.nii.gz": "1f50c8e50fb1054c979e4e892cf0990177fa4d3fb9e5e50345621e7feef6fb3a",
"sub-P035_UNIT1.nii.gz": "4cd4ccf42a2e1d86032115c929d3caf671cb6876509a41e5020cd0b58f48c924",
"sub-P101_UNIT1.nii.gz": "2606d1fdf15259d6790c9b74259716c910cef7921c65572993d60b17e32c50e5",
"sub-P095_UNIT1.nii.gz": "e201ab6c4498988170528213c104dfeb55e743b470178712da8a6d692e6d21b3",
"sub-P133_UNIT1.nii.gz": "d356d78fb82e3e712a808eccb681a3f759985333e06fe6767b4006d4fe49006b",
"sub-P029_UNIT1.nii.gz": "946f2dbf028bac08f02042751bf53bd301d452b6c7b6db0d89d8e67491b21777",
"sub-P067_UNIT1.nii.gz": "b86783c8f475cad23b3f414aa6e163a97d533b72b5f251f719a988a5345b9c0e",
"sub-P249_UNIT1.nii.gz": "9128cb1b4d47ea76005bc99422647a9a0be88da1415740f97a6819cde8621196",
"sub-P080_UNIT1.nii.gz": "ce751c30ab5ea3f9c3f82eb79730c9131823f7325cea652c823f0ddaaa502d8c",
"sub-P193_UNIT1.nii.gz": "871c200cce0c3b6105f6a6e9ca6e4bc129b1c1cf2a956e357a1e62b08fd276ea",
"sub-P039_UNIT1.nii.gz": "1034813df5c641a83a0aaa3613f016ff3c50e66008394cd41cb09554fd282cbe",
"sub-P162_UNIT1.nii.gz": "5ca25c14d41072811b35e3034c5b6ca13d5121649e56839883151a5a13936ee3",
"sub-P048_UNIT1.nii.gz": "a9a20aa2723ae2503cb55d12204a29ba45f7a65770ac3645b34fa20b0ee5fb64",
"sub-P200_UNIT1.nii.gz": "b80015c38d156bedb602b0f4ccdf58534378657cb6bc494796006d826e0b90c6",
"sub-P123_UNIT1.nii.gz": "95d8a172b13fd640f47566f736f5060b5a341f9e89342d8a90155038612ac602",
"sub-P012_UNIT1.nii.gz": "beac0203441d167b9fa513b1aa6fa62156743f55a6f4f3758cb80b6281f655b5",
"sub-P074_UNIT1.nii.gz": "807ab79818f090b312b897c7b1ff2fca660006bb1586be907bd0c5dbcb0295ab",
"sub-P092_UNIT1.nii.gz": "aa409241dbe1bcca90c843f42240aab275d90784b12841d0344932cd189f499b",
"sub-P045_UNIT1.nii.gz": "e66e5ba2114de28c41dbbdc4e2e03f66eb8234267daee3075f47c7f3defd2ba7",
"sub-P069_UNIT1.nii.gz": "425c5cf86a7accb6a6c447db8e4bbfac21b9b3586c87429df0654540ddf2ef64",
"sub-P073_UNIT1.nii.gz": "6201cd9398560717e8395f087363fc59d84d0c796496a953f37cc68d17c06f8f",
"sub-P097_UNIT1.nii.gz": "2492f8ed9c1cf2b1d9d187de53d9a16f36919615557ef0dcd419d643b97f05de",
"sub-P185_UNIT1.nii.gz": "686e202f743e9b9e1a5a4305f37b3b3c88170cb6e72e915eaab971f7a3cfdcfc",
"sub-P192_UNIT1.nii.gz": "f76121438526ff10ac1276b4a02746115eb5b48a37c0a22b68b8268eadd103d4",
"sub-P007_UNIT1.nii.gz": "fdd254ccf7ae1c59debf1ff4978e25307a2aefb363fb44bb5f1528ea3545df9a",
"sub-P117_UNIT1.nii.gz": "e85f4621ecfb2852b20d95fabc6ff3ea7fbf0748af0f3c065a0d210d635bd892",
"sub-P176_UNIT1.nii.gz": "9ab90a46287cccb02834d564859307a09cb0aa7ac1b675a04124ead536a9d830",
"sub-P050_UNIT1.nii.gz": "ca88ac95c80169df151a6db5c5eb6e660f568b6e0d1fddd4f078620e45331871",
"sub-P141_UNIT1.nii.gz": "c4634fd7f7ff6c7a5bdf31068ecb9d4cb991d59e33510acfdbfcfef5afac46be",
"sub-P144_UNIT1.nii.gz": "83a1e78105ab37d66e45025ae6264e90d7e7ee335dbc93371d785ea494dd6793",
"sub-P024_UNIT1.nii.gz": "d9c4c29c1deb96a670948db8e2da063b005e0e30d51e2679ebaa49c42674a9fa",
"sub-P163_UNIT1.nii.gz": "5cc52879f172e9f37865fa15f4d877b5a250649cb1126811a595701b1c5824f5",
"sub-P051_UNIT1.nii.gz": "06d92792653132f348dd6f7becbf875c3eb13ee01b1b7583848bd069b2065cf4",
"sub-P031_UNIT1.nii.gz": "20074cd10956ead4039413781bd0bdda0ff68bddd9c5a6d06e8fe8dcfeea4711",
"sub-P161_UNIT1.nii.gz": "9e4a81c46c054bb39bf45b50671af45b7cb03f1028bac9ec368db3a19bd43d42",
"sub-P042_UNIT1.nii.gz": "7022e4e9855b54b8850cef2b7c3249e4b786e18e30a3aba0d1b5eff7d9798cc0",
"sub-P044_UNIT1.nii.gz": "28f17d374dea69d3a1c38db130a29909f594207178c760e02b33faa3b62871c8",
"sub-P005_UNIT1.nii.gz": "dc3957affe67fc51fd09839c3e8f9bf7cd89d6ac70456fad4780f5b13edb1fd9",
"sub-P078_UNIT1.nii.gz": "8f825e17e68f7a2f96b9290e94270d91d4a704adfa853152fb64a6a3830a4cc7",
"sub-P105_UNIT1.nii.gz": "a37fffc33193437cbd28803ef295739186d7c8c2b8acc7b88b3a6e801b9396af",
"sub-P149_UNIT1.nii.gz": "307bfafd210e120e69620677b7904b5821214ae26c7b3e87dd3aaba5a859adc4",
"sub-P147_UNIT1.nii.gz": "5410e4e9f6886e38da86d5e0f01d5085eaa6c6546eec00a5dbc35d963221bb5b",
"sub-P096_UNIT1.nii.gz": "ba296d68d8b94e0221f5b785d1afb1691af2fbaf9adfabdd21ff38f2e1400b39",
"sub-P148_UNIT1.nii.gz": "7bc5464f6407072fcad6fb0f7a320b63bec54aa3ec6974eb311993642c574790",
"sub-P241_UNIT1.nii.gz": "f224fd83c1d4612a3e070c8ea52a098850ab6e0b6c60e0654fbdcef0e4e1a07a",
"sub-P187_UNIT1.nii.gz": "7af9f491f6aeead04829775c2fd4d17b2a52e7d88bfd5c0509464b4820066944",
"sub-P049_UNIT1.nii.gz": "baa96097a131992d62a6bcb74d397607b7106694a2cb6560d9d536234b0912f1",
"sub-P142_UNIT1.nii.gz": "e6b957fce9b91077e515b5935ff4fc53d8ae75bd917c07fbafc997d72dc44c6e",
"sub-P052_UNIT1.nii.gz": "4019d9d6d8732e74863846feeb2df66a97d50caeeaf6fb68283cddc0381e2f7a",
"sub-P055_UNIT1.nii.gz": "d33e55cb2361fab0fa4ddd85e23209004784db1b307cb69dee92fed3aedc5394",
"sub-P243_UNIT1.nii.gz": "49cdc5011616019b3e72981685699bcf0666b584edc2e189b4a59d50ae2f45e7",
"sub-P140_UNIT1.nii.gz": "5691e29530f45359cfb2b478ea0bcf528df81498edaf11d36011d52809e4df39",
"sub-P021_UNIT1.nii.gz": "7a04b074dc304a83a12879e58092fa462d75d388fea0a7d9c3f672d962e9bf18",
"sub-P104_UNIT1.nii.gz": "b4b50fd64c44c38ac0b1598b36cff22395b58e56306dd287561e91b252ded5b7",
"sub-P124_UNIT1.nii.gz": "977bf31c8516eee05933daa2913d52cf2c634bd6351799386916029b1c505673",
"sub-P138_UNIT1.nii.gz": "e1cc2ef1b61803a5aa633008dc11a84a93d9d4359fd5a0c2949f75de6c1beea2",
"sub-P004_UNIT1.nii.gz": "7b9b6ac2376874cf5f80f4ce235c1388bcab3304422b2ded699e1c14732067c1",
"sub-P085_UNIT1.nii.gz": "131655bdec44dfed232d3b345bde224f8786cf58df091a39ddf495bfc573d20e",
"sub-P122_UNIT1.nii.gz": "c180696f478aec9bd48389b8e031fa0977d3bafbce46ce0015f4a4690817c7bf",
"sub-P034_UNIT1.nii.gz": "1391480cbc5db75238395ad8bd8276b5cd301919c5087878805e1216da607705",
"sub-P244_UNIT1.nii.gz": "a84e3d47896bd248a5a8ea92f8db1e137924278076fb25e6e67a48bc56d78bca",
"sub-P151_UNIT1.nii.gz": "e13c0841add4ba4286411bb0faac384ecb7f8ecc17b89822289be95e7fb7a051",
"sub-P134_UNIT1.nii.gz": "bf702ad78d674a6dd8e0557c4b2173c880666d898ce38afbd5d0c25e53095158",
"sub-P194_UNIT1.nii.gz": "7b126553ac7d96c87c1207930d612f536031508b593d82efdd39a1ceb8d6c986",
"sub-P182_UNIT1.nii.gz": "1e2dfcc6293faff4c8689ae7cf07dcf49b2a958ec84875a7bb145daae8f8275c",
"sub-P010_UNIT1.nii.gz": "883743dd1d33c7aa4873cd01cfaa8c142660f4951661695a75e7da6030682fd4",
"sub-P108_UNIT1.nii.gz": "4176a197454a48dbcbab5aff045828db750121d186da6fc31c924035edd271bb",
"sub-P120_UNIT1.nii.gz": "b57bbfef8c1ffe3fa653ca096406ec74a112c43d0ae158ed18a0b0045ee9f8ec",
"sub-P109_UNIT1.nii.gz": "78d47ae447d6d8963a833a481df09750163f35fd612742033aece096403e01e4",
"sub-P116_UNIT1.nii.gz": "781d420cc3acbb8d1683a2e9f34fa83b9216e5b3fe39aab6dd71c45bb167bb58",
"sub-P121_UNIT1.nii.gz": "177ccbff5a04d3c48f7e59c7d6d24f06340a8b8f1e681ac2d1054d34c64e1938",
"sub-P072_UNIT1.nii.gz": "4932e5d4d1ec76b6b8d1dc622d9803abd5d8e235c84453502e8d004b83608ff5",
"sub-P038_UNIT1.nii.gz": "c8dff094c06d7a2893a1fe585a5636f7836d9cceebfbc9a6c901f48b6370e0f0",
"sub-P046_UNIT1.nii.gz": "8dbbbe33e810c8b3b3e29dfe763231ae5eb429383b095e4fd03cd298645606c3",
"sub-P125_UNIT1.nii.gz": "dac49318d803625cfe2ec5fb29c3c5ca3623bb18b74d01d9e0cf50dbb512d6da",
"sub-P084_UNIT1.nii.gz": "874e440642e9b4ac982bfafa10940f2a3698a0a7581ba41781b56778ea282186",
"sub-P172_UNIT1.nii.gz": "242f5e4adaf85ad29c618dbdffee572c09a110eb1c83161db556c1eba030d1aa",
"sub-P083_UNIT1.nii.gz": "3832285ebba279320e5c2186da045738caf69ff4c362dfa82bd4fe9fcca0b21f",
"sub-P077_UNIT1.nii.gz": "8153218e02140d8384962dec49f0ee0ad28f387cb14aff7ab45a444375a0da60",
"sub-P011_UNIT1.nii.gz": "ab1a746ba5d751445fd67a583cdf869ab014db13ef287d99a47a762e20fc6f34",
"sub-P113_UNIT1.nii.gz": "0c0f493ec6376a07d87c2f1df6f81578695e81c8e646223408c31c1f570deede",
"sub-P102_UNIT1.nii.gz": "d08509029f5d2900bd193f194491d1989bffb904d75a55f63097e4ea588904f0",
"sub-P062_UNIT1.nii.gz": "0b2baceb4a2df76b3d579a5d075343904fbc41eb1ebbb7a1c3c34fab4cf26a48",
"sub-P053_UNIT1.nii.gz": "6de0ffd47e6722fa582ead289478a14d89510a3bca18c36cfa44ca544e99d277",
"sub-P126_UNIT1.nii.gz": "01071bef694b7cb8098cde73c8e9db5eac6d86cd6bbbfbac8db2ccc5c555387b",
"sub-P019_UNIT1.nii.gz": "bd00a5592ae1158d7ef349f5fa4739e1e16f03538daee6a64d54a41e745200df",
"sub-P033_UNIT1.nii.gz": "d0005f04e4670aaa20b5f8935e849879bb5ef61615af6f4e3e75f9c1ef62e80d",
"sub-P159_UNIT1.nii.gz": "c1c565501a0252c5810a9081329d7c4c1240404fab6ecd4c2b17b9e22c5b274b",
"sub-P197_UNIT1.nii.gz": "7cab9ed02bb185b014dc8c000372b7011afef2a223e282b58e2928930b203e8b",
"sub-P169_UNIT1.nii.gz": "aae51a60ea1856d11f1b5a024d35d71c87bef882b2b763c4593cd85fce5ec763"
}
}
About this issue
- Original URL
- State: closed
- Created 2 years ago
- Comments: 15 (15 by maintainers)
I did some tests and have more information.
The PR #1164 for filtering 3D empty patches is up-to-date and working as expected. I just need to add some documentation points and it will be ready-to-go. But PR #1164 does not fix the present issue!
Why:
Resample
andCenterCrop
.NormalizeInstance
which is applied way after in data augmentation. In other words: after data augmentation, an empty patch will not be filtered out and ultimately leads to this issue.Options to fix:
RandomAffine
“scale” and “translate”.CenterCrop
to avoid “near” empty patches at the edge of the volume.NormalizeInstance
, I have the following idea:Current
NormalizeInstance
: https://github.com/ivadomed/ivadomed/blob/79493de405e34eaeb43567af35c3816e2e317090/ivadomed/transforms.py#L302-L305 What if we only normalize if thestd
is different from 0? like this:A patch with
std==0
is either empty or a constant. Is there any issue with not normalizing those specific cases?Yes, and that also seems like a good argument to revive the patch filter for 3D subvolumes in #1164. I can continue to investigate tomorrow.
I just continued investigating this, and the error was indeed raised due to an empty 3D patch only, as suspected. So the following happens:
Since an empty patch contains only zeros, the division leads to a
NaN
array. As per NumPy’s default behaviour, this results in a warning and not an exception.This
NaN
array flows through until it’s caught. Although it’s caught much later, the initial effect could be seen in the output of training loss being nan.#1164 might take care of the issue in general, but this is a great suggestion to warn the users.
Yes I think so. Just before the error I get this warning which point to an empty patch:
But then, the error itself comes from tensorboard:
Yup! Looks like it is related. When reducing the centercrop size (ie: edge of the image containing zeros), there is no more error.
So my suggestion would be to output a more informative warning/error when that happens.
Error happened with empty 3D patches, maybe related?
I was able to reproduce the error on branch
mhb/1213-fix-3d-data-augmentation
from PR #1222. However, it happened during the 5th epoch of training on my first try, and happened on the 13th epoch on my second try, so it’s somewhat random?In any case, it seems unrelated to the previous issue so I’ll go ahead ang merge #1222 and continue the investigation on this issue separately.
Maybe related to:
Nope! still getting the error