ipex-llm: RuntimeError: PyTorch is not linked with support for xpu devices
RuntimeError: PyTorch is not linked with support for xpu devices
Install BigDL GPU version on Windows 11 as https://bigdl.readthedocs.io/en/latest/doc/LLM/Overview/install_gpu.html
when execute the code as below, the model is chatglm3-6b
import torch
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModel
from transformers import AutoTokenizer
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://github.com/THUDM/ChatGLM3/blob/main/PROMPT.md
CHATGLM_V3_PROMPT_FORMAT = "<|user|>\n{prompt}\n<|assistant|>"
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for ChatGLM3 model')
parser.add_argument('--repo-id-or-model-path', type=str, default="d:/chatglm3-6b",
help='The huggingface repo id for the ChatGLM3 model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--prompt', type=str, default="AI是什么?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
model = AutoModel.from_pretrained(model_path,
load_in_4bit=True,
trust_remote_code=True)
model.save_low_bit("bigdl_chatglm3-6b-q4_0.bin")
#run the optimized model on Intel GPU
model = model.to('xpu')
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
# Generate predicted tokens
with torch.inference_mode():
prompt = CHATGLM_V3_PROMPT_FORMAT.format(prompt=args.prompt)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
st = time.time()
# if your selected model is capable of utilizing previous key/value attentions
# to enhance decoding speed, but has `"use_cache": false` in its model config,
# it is important to set `use_cache=True` explicitly in the `generate` function
# to obtain optimal performance with BigDL-LLM INT4 optimizations
output = model.generate(input_ids,
max_new_tokens=args.n_predict)
end = time.time()
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
print(f'Inference time: {end-st} s')
print('-'*20, 'Prompt', '-'*20)
print(prompt)
print('-'*20, 'Output', '-'*20)
print(output_str)
the Error will occur:
Does BigDL support to run ChatGLM3-6b on ARC GPU right now?
About this issue
- Original URL
- State: open
- Created 6 months ago
- Comments: 18 (9 by maintainers)
Yes!! Thank you very much for guidance! It works!!!
Tested sample code
My machine is the NUC12 蝰蛇峡谷(Serpent Canyon) i7 12700H+Arc A770M
I change ‘xpu:1’ back to ‘xpu’ and set ONEAPI_DEVICE_SELECTOR=level_zero:1 – It works!!! Thank you very much!!!
run the code