transformers: Some MarianMT models broken and output garbage
System Info
transformersversion: 4.30.2- Platform: macOS-13.4.1-arm64-arm-64bit
- Python version: 3.11.4
- Huggingface_hub version: 0.16.3
- Safetensors version: 0.3.1
- PyTorch version (GPU?): 2.1.0.dev20230413 (False)
- Tensorflow version (GPU?): not installed (NA)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Using GPU in script?: no
- Using distributed or parallel set-up in script?: no
Who can help?
@ArthurZucker @younesbelkada @gante
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examplesfolder (such as GLUE/SQuAD, …) - My own task or dataset (give details below)
Reproduction
Some of the MarianMT models I use like Helsinki-NLP/opus-mt-tc-big-fi-en are currently broken. This bug is reproduced in the Huggingface Hub inference widget: https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-fi-en?text=Kissa+kävelee+kadulla You can see that it gives a garbage translation.
This model worked just last week! I also see that the model hasn’t been updated in the Hub for over a month, so the bug must be in the transformers library.
Simple code to reproduce locally:
>>> tokenizer = transformers.AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-tc-big-fi-en")
>>> model = transformers.AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-tc-big-fi-en")
>>> model.generate(**tokenizer("kissa kävelee kadulla", return_tensors="pt"))
tensor([[57829, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542,
16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542,
16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542,
16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542, 16542,
16542, 16542, 16542, 16542, 16542, 16542, 16542, 19074, 19074, 19074,
19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074,
19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074,
19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074,
19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074, 19074,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825, 11825,
11825, 41756]])
Expected behavior
The model should give a proper translation.
About this issue
- Original URL
- State: open
- Created 9 months ago
- Reactions: 1
- Comments: 17
It would be very nice but I’m super low on bandwidth for that. Maybe @zucchini-nlp could be a nice challenge! Otherwise community contributions are really welcome!