LLaVA: [Question] OOM on finetuning vicuna-7b llava model on 4*A800 80G, anything wrong with my cfg?
Question
Thanks for the great work~
Also, it looks like A800 cannot enable flash-attn. (error screenshot below)
python \
llava/train/train.py \
--model_name_or_path /root/devroot/models/vicuna-7b-v1.3 \
--version v1 \
--data_path /root/devroot/datasets/llava_instruct/llava_instruct_150k.json \
--image_folder /root/devroot/datasets/llava_instruct/coco-train2017/ \
--vision_tower openai/clip-vit-large-patch14 \
--pretrain_mm_mlp_adapter ./checkpoints/vicuna-7b-pretrain/mm_projector.bin \
--mm_vision_select_layer -1 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--bf16 True \
--output_dir ./checkpoints/vicuna-7b-finetune \
--num_train_epochs 3 \
--per_device_train_batch_size 1 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 32 \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--model_max_length 2048 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to wandb
About this issue
- Original URL
- State: closed
- Created 10 months ago
- Comments: 17 (5 by maintainers)
3699 iters is 3 epochs already. So you do not need to multiply by 3. ~6 hours is expected.
That is not okay. Please use zero3.json or zero2.
That is not needed. it is a linear layer, so it will be fine.