llama.cpp: Illegal instruction on Android (Honor Magic 5)

Prerequisites

Please answer the following questions for yourself before submitting an issue.

  • I am running the latest code. Development is very rapid so there are no tagged versions as of now.
  • I carefully followed the README.md.
  • I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
  • I reviewed the Discussions, and have a new bug or useful enhancement to share.

Current Behavior

$ git clone --depth 1 https://github.com/ggerganov/llama.cpp
$ cd llama.cpp
$ mkdir -p build
$ rm -rf build/*
$ cd build
$ cmake .. -DLLAMA_SANITIZE_ADDRESS=ON && cmake --build . --config Debug
-- CMAKE_SYSTEM_PROCESSOR: aarch64
-- ARM detected
-- Configuring done (0.3s)
-- Generating done (0.1s)
-- Build files have been written to: /data/data/com.termux/files/home/llama.cpp/build
[  1%] Built target BUILD_INFO
[  2%] Building C object CMakeFiles/ggml.dir/ggml.c.o
/data/data/com.termux/files/home/llama.cpp/ggml.c:2432:5: warning: implicit conversion increases floating-point precision: 'float32_t' (aka 'float') to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 2432 |     GGML_F16_VEC_REDUCE(sumf, sum);
      |     ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/data/data/com.termux/files/home/llama.cpp/ggml.c:1959:41: note: expanded from macro 'GGML_F16_VEC_REDUCE'
 1959 |     #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
      |                                         ^
/data/data/com.termux/files/home/llama.cpp/ggml.c:1949:38: note: expanded from macro 'GGML_F32Cx4_REDUCE'
 1949 |     #define GGML_F32Cx4_REDUCE       GGML_F32x4_REDUCE
      |                                      ^
/data/data/com.termux/files/home/llama.cpp/ggml.c:1879:11: note: expanded from macro 'GGML_F32x4_REDUCE'
 1879 |     res = GGML_F32x4_REDUCE_ONE(x[0]);         \
      |         ~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~
/data/data/com.termux/files/home/llama.cpp/ggml.c:1864:34: note: expanded from macro 'GGML_F32x4_REDUCE_ONE'
 1864 | #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
      |                                  ^~~~~~~~~~~~~
/data/data/com.termux/files/home/llama.cpp/ggml.c:3692:9: warning: implicit conversion increases floating-point precision: 'float32_t' (aka 'float') to 'ggml_float' (aka 'double') [-Wdouble-promotion]
 3692 |         GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
      |         ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/data/data/com.termux/files/home/llama.cpp/ggml.c:1959:41: note: expanded from macro 'GGML_F16_VEC_REDUCE'
 1959 |     #define GGML_F16_VEC_REDUCE         GGML_F32Cx4_REDUCE
      |                                         ^
/data/data/com.termux/files/home/llama.cpp/ggml.c:1949:38: note: expanded from macro 'GGML_F32Cx4_REDUCE'
 1949 |     #define GGML_F32Cx4_REDUCE       GGML_F32x4_REDUCE
      |                                      ^
/data/data/com.termux/files/home/llama.cpp/ggml.c:1879:11: note: expanded from macro 'GGML_F32x4_REDUCE'
 1879 |     res = GGML_F32x4_REDUCE_ONE(x[0]);         \
      |         ~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~
/data/data/com.termux/files/home/llama.cpp/ggml.c:1864:34: note: expanded from macro 'GGML_F32x4_REDUCE_ONE'
 1864 | #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
      |                                  ^~~~~~~~~~~~~
2 warnings generated.
[  3%] Building C object CMakeFiles/ggml.dir/ggml-alloc.c.o
[  4%] Building C object CMakeFiles/ggml.dir/ggml-backend.c.o
[  5%] Building C object CMakeFiles/ggml.dir/k_quants.c.o
[  5%] Built target ggml
[  6%] Linking C static library libggml_static.a
[  6%] Built target ggml_static
[  7%] Building CXX object CMakeFiles/llama.dir/llama.cpp.o
[  8%] Linking CXX static library libllama.a
[  8%] Built target llama
[ 10%] Building CXX object common/CMakeFiles/common.dir/common.cpp.o
[ 11%] Building CXX object common/CMakeFiles/common.dir/sampling.cpp.o
[ 12%] Building CXX object common/CMakeFiles/common.dir/console.cpp.o
[ 13%] Building CXX object common/CMakeFiles/common.dir/grammar-parser.cpp.o
[ 14%] Building CXX object common/CMakeFiles/common.dir/train.cpp.o
[ 14%] Built target common
[ 15%] Building CXX object tests/CMakeFiles/test-quantize-fns.dir/test-quantize-fns.cpp.o
[ 16%] Linking CXX executable ../bin/test-quantize-fns
[ 16%] Built target test-quantize-fns
[ 17%] Building CXX object tests/CMakeFiles/test-quantize-perf.dir/test-quantize-perf.cpp.o
[ 19%] Linking CXX executable ../bin/test-quantize-perf
[ 19%] Built target test-quantize-perf
[ 20%] Building CXX object tests/CMakeFiles/test-sampling.dir/test-sampling.cpp.o
[ 21%] Linking CXX executable ../bin/test-sampling
[ 21%] Built target test-sampling
[ 22%] Building CXX object tests/CMakeFiles/test-tokenizer-0-llama.dir/test-tokenizer-0-llama.cpp.o
[ 23%] Linking CXX executable ../bin/test-tokenizer-0-llama
[ 23%] Built target test-tokenizer-0-llama
[ 24%] Building CXX object tests/CMakeFiles/test-tokenizer-0-falcon.dir/test-tokenizer-0-falcon.cpp.o
[ 25%] Linking CXX executable ../bin/test-tokenizer-0-falcon
[ 25%] Built target test-tokenizer-0-falcon
[ 26%] Building CXX object tests/CMakeFiles/test-tokenizer-1-llama.dir/test-tokenizer-1-llama.cpp.o
[ 28%] Linking CXX executable ../bin/test-tokenizer-1-llama
[ 28%] Built target test-tokenizer-1-llama
[ 29%] Building CXX object tests/CMakeFiles/test-tokenizer-1-bpe.dir/test-tokenizer-1-bpe.cpp.o
[ 30%] Linking CXX executable ../bin/test-tokenizer-1-bpe
[ 30%] Built target test-tokenizer-1-bpe
[ 31%] Building CXX object tests/CMakeFiles/test-grammar-parser.dir/test-grammar-parser.cpp.o
[ 32%] Linking CXX executable ../bin/test-grammar-parser
[ 32%] Built target test-grammar-parser
[ 33%] Building CXX object tests/CMakeFiles/test-llama-grammar.dir/test-llama-grammar.cpp.o
[ 34%] Linking CXX executable ../bin/test-llama-grammar
[ 34%] Built target test-llama-grammar
[ 35%] Building CXX object tests/CMakeFiles/test-grad0.dir/test-grad0.cpp.o
[ 37%] Linking CXX executable ../bin/test-grad0
[ 37%] Built target test-grad0
[ 38%] Building CXX object tests/CMakeFiles/test-rope.dir/test-rope.cpp.o
[ 39%] Linking CXX executable ../bin/test-rope
[ 39%] Built target test-rope
[ 40%] Building C object tests/CMakeFiles/test-c.dir/test-c.c.o
[ 41%] Linking CXX executable ../bin/test-c
[ 41%] Built target test-c
[ 42%] Building CXX object examples/main/CMakeFiles/main.dir/main.cpp.o
[ 43%] Linking CXX executable ../../bin/main
[ 43%] Built target main
[ 44%] Building CXX object examples/quantize/CMakeFiles/quantize.dir/quantize.cpp.o
[ 46%] Linking CXX executable ../../bin/quantize
[ 46%] Built target quantize
[ 47%] Building CXX object examples/quantize-stats/CMakeFiles/quantize-stats.dir/quantize-stats.cpp.o
[ 48%] Linking CXX executable ../../bin/quantize-stats
[ 48%] Built target quantize-stats
[ 49%] Building CXX object examples/perplexity/CMakeFiles/perplexity.dir/perplexity.cpp.o
[ 50%] Linking CXX executable ../../bin/perplexity
[ 50%] Built target perplexity
[ 51%] Building CXX object examples/embedding/CMakeFiles/embedding.dir/embedding.cpp.o
[ 52%] Linking CXX executable ../../bin/embedding
[ 52%] Built target embedding
[ 53%] Building CXX object examples/save-load-state/CMakeFiles/save-load-state.dir/save-load-state.cpp.o
[ 55%] Linking CXX executable ../../bin/save-load-state
[ 55%] Built target save-load-state
[ 56%] Building CXX object examples/benchmark/CMakeFiles/benchmark.dir/benchmark-matmult.cpp.o
[ 57%] Linking CXX executable ../../bin/benchmark
[ 57%] Built target benchmark
[ 58%] Building CXX object examples/baby-llama/CMakeFiles/baby-llama.dir/baby-llama.cpp.o
[ 59%] Linking CXX executable ../../bin/baby-llama
[ 59%] Built target baby-llama
[ 60%] Building CXX object examples/train-text-from-scratch/CMakeFiles/train-text-from-scratch.dir/train-text-from-scratch.cpp.o
[ 61%] Linking CXX executable ../../bin/train-text-from-scratch
[ 61%] Built target train-text-from-scratch
[ 62%] Building CXX object examples/finetune/CMakeFiles/finetune.dir/finetune.cpp.o
[ 64%] Linking CXX executable ../../bin/finetune
[ 64%] Built target finetune
[ 65%] Building CXX object examples/convert-llama2c-to-ggml/CMakeFiles/convert-llama2c-to-ggml.dir/convert-llama2c-to-ggml.cpp.o
[ 66%] Linking CXX executable ../../bin/convert-llama2c-to-ggml
[ 66%] Built target convert-llama2c-to-ggml
[ 67%] Building CXX object examples/simple/CMakeFiles/simple.dir/simple.cpp.o
[ 68%] Linking CXX executable ../../bin/simple
[ 68%] Built target simple
[ 69%] Building CXX object examples/batched/CMakeFiles/batched.dir/batched.cpp.o
[ 70%] Linking CXX executable ../../bin/batched
[ 70%] Built target batched
[ 71%] Building CXX object examples/batched-bench/CMakeFiles/batched-bench.dir/batched-bench.cpp.o
[ 73%] Linking CXX executable ../../bin/batched-bench
[ 73%] Built target batched-bench
[ 74%] Building CXX object examples/speculative/CMakeFiles/speculative.dir/speculative.cpp.o
[ 75%] Linking CXX executable ../../bin/speculative
[ 75%] Built target speculative
[ 76%] Building CXX object examples/parallel/CMakeFiles/parallel.dir/parallel.cpp.o
[ 77%] Linking CXX executable ../../bin/parallel
[ 77%] Built target parallel
[ 78%] Building CXX object examples/embd-input/CMakeFiles/embdinput.dir/embd-input-lib.cpp.o
[ 79%] Linking CXX static library libembdinput.a
[ 79%] Built target embdinput
[ 80%] Building CXX object examples/embd-input/CMakeFiles/embd-input-test.dir/embd-input-test.cpp.o
[ 82%] Linking CXX executable ../../bin/embd-input-test
[ 82%] Built target embd-input-test
[ 83%] Building CXX object examples/llava/CMakeFiles/clip.dir/clip.cpp.o
[ 84%] Linking CXX static library libclip.a
[ 84%] Built target clip
[ 85%] Building CXX object examples/llava/CMakeFiles/llava.dir/llava.cpp.o
[ 86%] Linking CXX executable ../../bin/llava
[ 86%] Built target llava
[ 87%] Building CXX object examples/llama-bench/CMakeFiles/llama-bench.dir/llama-bench.cpp.o
[ 88%] Linking CXX executable ../../bin/llama-bench
[ 88%] Built target llama-bench
[ 89%] Building CXX object examples/beam-search/CMakeFiles/beam-search.dir/beam-search.cpp.o
[ 91%] Linking CXX executable ../../bin/beam-search
[ 91%] Built target beam-search
[ 92%] Building CXX object examples/server/CMakeFiles/server.dir/server.cpp.o
[ 93%] Linking CXX executable ../../bin/server
[ 93%] Built target server
[ 94%] Building CXX object examples/export-lora/CMakeFiles/export-lora.dir/export-lora.cpp.o
[ 95%] Linking CXX executable ../../bin/export-lora
[ 95%] Built target export-lora
[ 96%] Building CXX object pocs/vdot/CMakeFiles/vdot.dir/vdot.cpp.o
[ 97%] Linking CXX executable ../../bin/vdot
[ 97%] Built target vdot
[ 98%] Building CXX object pocs/vdot/CMakeFiles/q8dot.dir/q8dot.cpp.o
[100%] Linking CXX executable ../../bin/q8dot
[100%] Built target q8dot

$ ./build/bin/main -m /sdcard/Download/llama-2-7b-chat.Q3_K_S.gguf -color -c 2048 --keep 1 -t 3 -b 10 -i -ins

Log start  
main: build = 1 (2a4bcba)  
main: built with clang version 17.0.2 for aarch64-unknown-linux-android24
main: seed  = 1697243692
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from /sdcard/Download/llama-2-7b-chat.Q3_K_S.gguf (version GGUF V2 (latest))
llama_model_loader: - tensor    0:                token_embd.weight q3_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor    1:           blk.0.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    2:            blk.0.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor    3:            blk.0.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    4:              blk.0.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor    5:            blk.0.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor    6:              blk.0.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    7:         blk.0.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    8:              blk.0.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor    9:              blk.0.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   10:           blk.1.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   11:            blk.1.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   12:            blk.1.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   13:              blk.1.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   14:            blk.1.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   15:              blk.1.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   16:         blk.1.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   17:              blk.1.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   18:              blk.1.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   19:          blk.10.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   20:           blk.10.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   21:           blk.10.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   22:             blk.10.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   23:           blk.10.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   24:             blk.10.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   25:        blk.10.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   26:             blk.10.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   27:             blk.10.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   28:          blk.11.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   29:           blk.11.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   30:           blk.11.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   31:             blk.11.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   32:           blk.11.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   33:             blk.11.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   34:        blk.11.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   35:             blk.11.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   36:             blk.11.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   37:          blk.12.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   38:           blk.12.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   39:           blk.12.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   40:             blk.12.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   41:           blk.12.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   42:             blk.12.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   43:        blk.12.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   44:             blk.12.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   45:             blk.12.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   46:          blk.13.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   47:           blk.13.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   48:           blk.13.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   49:             blk.13.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   50:           blk.13.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   51:             blk.13.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   52:        blk.13.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   53:             blk.13.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   54:             blk.13.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   55:          blk.14.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   56:           blk.14.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   57:           blk.14.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   58:             blk.14.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   59:           blk.14.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   60:             blk.14.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   61:        blk.14.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   62:             blk.14.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   63:             blk.14.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   64:          blk.15.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   65:           blk.15.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   66:           blk.15.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   67:             blk.15.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   68:           blk.15.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   69:             blk.15.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   70:        blk.15.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   71:             blk.15.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   72:             blk.15.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   73:          blk.16.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   74:           blk.16.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   75:           blk.16.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   76:             blk.16.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   77:           blk.16.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   78:             blk.16.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   79:        blk.16.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   80:             blk.16.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   81:             blk.16.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   82:          blk.17.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   83:           blk.17.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   84:           blk.17.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   85:             blk.17.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   86:           blk.17.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   87:             blk.17.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   88:        blk.17.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   89:             blk.17.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   90:             blk.17.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   91:          blk.18.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   92:           blk.18.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor   93:           blk.18.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   94:             blk.18.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor   95:           blk.18.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor   96:             blk.18.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   97:        blk.18.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   98:             blk.18.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor   99:             blk.18.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  100:          blk.19.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  101:           blk.19.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  102:           blk.19.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  103:             blk.19.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  104:           blk.19.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  105:             blk.19.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  106:        blk.19.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  107:             blk.19.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  108:             blk.19.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  109:           blk.2.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  110:            blk.2.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  111:            blk.2.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  112:              blk.2.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  113:            blk.2.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  114:              blk.2.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  115:         blk.2.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  116:              blk.2.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  117:              blk.2.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  118:          blk.20.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  119:           blk.20.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  120:           blk.20.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  121:             blk.20.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  122:           blk.20.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  123:             blk.20.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  124:        blk.20.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  125:             blk.20.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  126:             blk.20.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  127:          blk.21.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  128:           blk.21.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  129:           blk.21.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  130:             blk.21.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  131:           blk.21.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  132:             blk.21.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  133:        blk.21.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  134:             blk.21.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  135:             blk.21.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  136:          blk.22.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  137:           blk.22.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  138:           blk.22.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  139:             blk.22.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  140:           blk.22.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  141:             blk.22.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  142:        blk.22.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  143:             blk.22.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  144:             blk.22.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  145:          blk.23.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  146:           blk.23.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  147:           blk.23.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  148:             blk.23.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  149:           blk.23.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  150:             blk.23.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  151:        blk.23.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  152:             blk.23.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  153:             blk.23.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  154:           blk.3.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  155:            blk.3.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  156:            blk.3.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  157:              blk.3.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  158:            blk.3.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  159:              blk.3.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  160:         blk.3.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  161:              blk.3.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  162:              blk.3.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  163:           blk.4.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  164:            blk.4.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  165:            blk.4.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  166:              blk.4.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  167:            blk.4.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  168:              blk.4.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  169:         blk.4.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  170:              blk.4.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  171:              blk.4.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  172:           blk.5.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  173:            blk.5.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  174:            blk.5.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  175:              blk.5.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  176:            blk.5.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  177:              blk.5.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  178:         blk.5.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  179:              blk.5.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  180:              blk.5.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  181:           blk.6.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  182:            blk.6.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  183:            blk.6.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  184:              blk.6.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  185:            blk.6.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  186:              blk.6.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  187:         blk.6.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  188:              blk.6.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  189:              blk.6.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  190:           blk.7.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  191:            blk.7.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  192:            blk.7.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  193:              blk.7.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  194:            blk.7.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  195:              blk.7.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  196:         blk.7.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  197:              blk.7.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  198:              blk.7.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  199:           blk.8.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  200:            blk.8.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  201:            blk.8.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  202:              blk.8.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  203:            blk.8.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  204:              blk.8.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  205:         blk.8.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  206:              blk.8.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  207:              blk.8.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  208:           blk.9.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  209:            blk.9.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  210:            blk.9.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  211:              blk.9.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  212:            blk.9.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  213:              blk.9.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  214:         blk.9.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  215:              blk.9.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  216:              blk.9.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  217:                    output.weight q6_K     [  4096, 32000,     1,     1 ]
llama_model_loader: - tensor  218:          blk.24.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  219:           blk.24.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  220:           blk.24.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  221:             blk.24.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  222:           blk.24.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  223:             blk.24.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  224:        blk.24.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  225:             blk.24.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  226:             blk.24.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  227:          blk.25.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  228:           blk.25.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  229:           blk.25.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  230:             blk.25.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  231:           blk.25.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  232:             blk.25.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  233:        blk.25.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  234:             blk.25.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  235:             blk.25.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  236:          blk.26.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  237:           blk.26.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  238:           blk.26.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  239:             blk.26.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  240:           blk.26.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  241:             blk.26.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  242:        blk.26.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  243:             blk.26.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  244:             blk.26.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  245:          blk.27.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  246:           blk.27.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  247:           blk.27.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  248:             blk.27.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  249:           blk.27.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  250:             blk.27.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  251:        blk.27.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  252:             blk.27.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  253:             blk.27.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  254:          blk.28.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  255:           blk.28.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  256:           blk.28.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  257:             blk.28.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  258:           blk.28.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  259:             blk.28.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  260:        blk.28.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  261:             blk.28.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  262:             blk.28.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  263:          blk.29.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  264:           blk.29.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  265:           blk.29.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  266:             blk.29.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  267:           blk.29.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  268:             blk.29.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  269:        blk.29.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  270:             blk.29.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  271:             blk.29.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  272:          blk.30.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  273:           blk.30.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  274:           blk.30.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  275:             blk.30.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  276:           blk.30.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  277:             blk.30.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  278:        blk.30.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  279:             blk.30.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  280:             blk.30.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  281:          blk.31.attn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  282:           blk.31.ffn_down.weight q3_K     [ 11008,  4096,     1,     1 ]
llama_model_loader: - tensor  283:           blk.31.ffn_gate.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  284:             blk.31.ffn_up.weight q3_K     [  4096, 11008,     1,     1 ]
llama_model_loader: - tensor  285:           blk.31.ffn_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - tensor  286:             blk.31.attn_k.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  287:        blk.31.attn_output.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  288:             blk.31.attn_q.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  289:             blk.31.attn_v.weight q3_K     [  4096,  4096,     1,     1 ]
llama_model_loader: - tensor  290:               output_norm.weight f32      [  4096,     1,     1,     1 ]
llama_model_loader: - kv   0:                       general.architecture str     
llama_model_loader: - kv   1:                               general.name str     
llama_model_loader: - kv   2:                       llama.context_length u32     
llama_model_loader: - kv   3:                     llama.embedding_length u32     
llama_model_loader: - kv   4:                          llama.block_count u32     
llama_model_loader: - kv   5:                  llama.feed_forward_length u32     
llama_model_loader: - kv   6:                 llama.rope.dimension_count u32     
llama_model_loader: - kv   7:                 llama.attention.head_count u32     
llama_model_loader: - kv   8:              llama.attention.head_count_kv u32     
llama_model_loader: - kv   9:     llama.attention.layer_norm_rms_epsilon f32     
llama_model_loader: - kv  10:                          general.file_type u32     
llama_model_loader: - kv  11:                       tokenizer.ggml.model str     
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr     
llama_model_loader: - kv  13:                      tokenizer.ggml.scores arr     
llama_model_loader: - kv  14:                  tokenizer.ggml.token_type arr     
llama_model_loader: - kv  15:                tokenizer.ggml.bos_token_id u32     
llama_model_loader: - kv  16:                tokenizer.ggml.eos_token_id u32     
llama_model_loader: - kv  17:            tokenizer.ggml.unknown_token_id u32     
llama_model_loader: - kv  18:               general.quantization_version u32     
llama_model_loader: - type  f32:   65 tensors
llama_model_loader: - type q3_K:  225 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format           = GGUF V2 (latest)
llm_load_print_meta: arch             = llama
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 32000
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: n_ctx_train      = 4096
llm_load_print_meta: n_embd           = 4096
llm_load_print_meta: n_head           = 32
llm_load_print_meta: n_head_kv        = 32
llm_load_print_meta: n_layer          = 32
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff             = 11008
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type       = 7B
llm_load_print_meta: model ftype      = mostly Q3_K - Small
llm_load_print_meta: model params     = 6.74 B
llm_load_print_meta: model size       = 2.75 GiB (3.50 BPW) 
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.10 MB
llm_load_tensors: mem required  = 2811.11 MB
.................................................................................................
llama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size  = 1024.00 MB
llama_new_context_with_model: compute buffer total size = 9.17 MB
Illegal instruction

Environment and Context

Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.

  • Physical (or virtual) hardware you are using, e.g. for Linux:

$ lscpu

Architecture:                    aarch64
CPU op-mode(s):                  32-bit, 64-bit
Byte Order:                      Little Endian
CPU(s):                          8
On-line CPU(s) list:             0-7
Vendor ID:                       ARM
Model name:                      Cortex-A510
Model:                           1
Thread(s) per core:              1
Core(s) per socket:              3
Socket(s):                       1
Stepping:                        r1p1
Frequency boost:                 enabled
CPU(s) scaling MHz:              61%
CPU max MHz:                     2016.0000
CPU min MHz:                     307.2000
BogoMIPS:                        38.40
Flags:                           fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg dcpodp flagm2 frint i8mm bf16 bti
Model name:                      Cortex-A715
Model:                           0
Thread(s) per core:              1
Core(s) per socket:              2
Socket(s):                       1
Stepping:                        r1p0
CPU(s) scaling MHz:              59%
CPU max MHz:                     2803.2000
CPU min MHz:                     499.2000
BogoMIPS:                        38.40
Flags:                           fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg dcpodp flagm2 frint i8mm bf16 bti
Model name:                      Cortex-A710
Model:                           0
Thread(s) per core:              1
Core(s) per socket:              2
Socket(s):                       1
Stepping:                        r2p0
CPU(s) scaling MHz:              59%
CPU max MHz:                     2803.2000
CPU min MHz:                     499.2000
BogoMIPS:                        38.40
Flags:                           fp asimd evtstrm aes pmull sha1 sha2 crc32 atomics fphp asimdhp cpuid asimdrdm jscvt fcma lrcpc dcpop sha3 sm3 sm4 asimddp sha512 asimdfhm dit uscat ilrcpc flagm ssbs sb paca pacg dcpodp flagm2 frint i8mm bf16 bti
Model name:                      -
Model:                           0
Thread(s) per core:              1
Core(s) per socket:              1
Socket(s):                       1
Stepping:                        0x1
CPU(s) scaling MHz:              27%
CPU max MHz:                     3187.2000
CPU min MHz:                     595.2000
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:        Mitigation; __user pointer sanitization
Vulnerability Spectre v2:        Vulnerable: Unprivileged eBPF enabled
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected
  • Operating System, e.g. for Linux:

$ uname -a

Linux localhost 5.15.41-qki-consolidate-android13-8-g8d73f5ad0193 #1 SMP PREEMPT Tue Dec 27 04:30:59 UTC 2022 aarch64 Android
$ python3 --version
Python 3.11.6
$ make --version
GNU Make 4.4.1
$ cmake --version
cmake version 3.27.7
$ g++ --version
clang version 17.0.2
Target: aarch64-unknown-linux-android24
Thread model: posix
InstalledDir: /data/data/com.termux/files/usr/bin

Failure Information (for bugs)

see above

Steps to Reproduce

see above

Failure Logs

see above

About this issue

  • Original URL
  • State: closed
  • Created 9 months ago
  • Comments: 18 (1 by maintainers)

Most upvoted comments

@ElvisClaros Ok, thank you for confirming.

By the way, that’s not complete/correct prompt format, give me a moment and I’ll give you correct arguments for main for ChatML format

Also, you might want to beta test #3538 because current master branch ignores those ChatML tags ( you can just git clone --branch specialtokens https://github.com/staviq/llama.cpp.git specialtokens to get that PR in one go )

EDIT: Your arguments would be like so ./main -m /data/data/com.termux/files/home/llama.cpp/models/tinyllama-1.1b-chat-v0.3.Q4_0.gguf -e -p "<|im_start|>system\nYou are an AI assistant.Below is an instruction that describes a task. Write a response that appropriately completes the request.<|im_end|>\n" -r "<|im_start|>user\n" --in-prefix "<|im_start|>user\n" --in-suffix "<|im_end|>\n<|im_start|>assistant\n" -r "<|im_end|>\n" --color -c 2048 -ins --temp 0.7 --repeat_penalty 1.1 -t 8 -n -1 -s -1

You can save that -p prompt argument to your prompt file and call it with -f, but you have to replace \n with newlines and make sure that prompt file ends with a newline too, they seem to be important with ChatML format.

You can confirm the prompt format was properly processes by adding --verbose-prompt, this will print tokenized prompt format in the output after model loads.

If everything goes correctly, tokenized prompt should not contain <|im_start|> or <|im_end|> but an empty string with token number assigned.

Please note, main in that PR does process special tokens correctly, but they are still shown on the screen during the chat, you can ignore that as long as --verbose-prompt shows that prompt format tokenized properly.

@ElvisClaros Hmm… I cannot reproduce, it works fine for me. The only thing that comes to my mind is that CPU capabilities are incorrectly detected by the compiler in your case. Can you try editing Makefile and commenting out or removing those lines, and compiling again ? https://github.com/ggerganov/llama.cpp/blob/11dc1091f64b24ca6d643acc6d0051117ba60161/Makefile#L310-L311

yes this method works and is repeatable with make -C llama.cpp -j4 and llama.cpp/server -m /sdcard/Download/llama-2-7b-chat.Q3_K_S.gguf on the Honor Magic 5. Thank you!

issue closed

@ElvisClaros Hmm… I cannot reproduce, it works fine for me. The only thing that comes to my mind is that CPU capabilities are incorrectly detected by the compiler in your case.

Can you try editing Makefile and commenting out or removing those lines, and compiling again ?

https://github.com/ggerganov/llama.cpp/blob/11dc1091f64b24ca6d643acc6d0051117ba60161/Makefile#L310-L311

yes this method works and is repeatable with make -C llama.cpp -j4 and llama.cpp/server -m /sdcard/Download/llama-2-7b-chat.Q3_K_S.gguf on the Honor Magic 5. Thank you!