hudi: [SUPPORT]failed to read timestamp column in version 0.7.0 even when HIVE_SUPPORT_TIMESTAMP is enabled
Failed to read timestamp column after the hive sync is enabled
Here is the testing version list
hive = 3.1.2
hadoop = 3.2.2
spark = 3.0.1
hudi = 0.7.0
Here is the test application code snippet
import org.apache.spark.sql._
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.spark.sql.functions._
import org.apache.hudi.QuickstartUtils._
import scala.collection.JavaConversions._
import org.apache.spark.sql.SaveMode._
import org.apache.hudi.DataSourceReadOptions
import org.apache.hudi.DataSourceWriteOptions
import org.apache.hudi.config.HoodieWriteConfig
import org.apache.hudi.hive.MultiPartKeysValueExtractor
import org.apache.spark.sql.functions._
import org.apache.hudi.keygen._
import org.apache.spark.sql.streaming._
case class Person(firstname:String, age:Int, gender:Int)
val personDF = List(Person("tom",45,1), Person("iris",44,0)).toDF.withColumn("ts",unix_timestamp).withColumn("insert_time",current_timestamp)
//val personDF2 = List(Person("peng",56,1), Person("iris",51,0),Person("jacky",25,1)).toDF.withColumn("ts",unix_timestamp).withColumn("insert_time",current_timestamp)
//personDF.write.mode(SaveMode.Overwrite).format("hudi").saveAsTable("employee")
val tableName = "employee"
val hudiCommonOptions = Map(
"hoodie.compact.inline" -> "true",
"hoodie.compact.inline.max.delta.commits" ->"5",
"hoodie.base.path" -> s"/tmp/$tableName",
"hoodie.table.name" -> tableName,
"hoodie.datasource.write.table.type"->"MERGE_ON_READ",
"hoodie.datasource.write.operation" -> "upsert",
"hoodie.clean.async" -> "true"
)
val hudiHiveOptions = Map(
DataSourceWriteOptions.HIVE_SYNC_ENABLED_OPT_KEY -> "true",
DataSourceWriteOptions.HIVE_URL_OPT_KEY -> "jdbc:hive2://localhost:10000",
DataSourceWriteOptions.HIVE_PARTITION_FIELDS_OPT_KEY -> "gender",
DataSourceWriteOptions.HIVE_STYLE_PARTITIONING_OPT_KEY -> "true",
"hoodie.datasource.hive_sync.support_timestamp"->"true",
DataSourceWriteOptions.HIVE_TABLE_OPT_KEY -> tableName,
DataSourceWriteOptions.HIVE_PARTITION_EXTRACTOR_CLASS_OPT_KEY -> classOf[MultiPartKeysValueExtractor].getName
)
val basePath = s"/tmp/$tableName"
personDF.write.format("hudi").
option(PRECOMBINE_FIELD_OPT_KEY, "ts").
option(RECORDKEY_FIELD_OPT_KEY, "firstname").
option(PARTITIONPATH_FIELD_OPT_KEY, "gender").
options(hudiCommonOptions).
options(hudiHiveOptions).
mode(SaveMode.Overwrite).
save(basePath)
sql("select * from employee_rt").show(false)
The final query got failed and the following is the error message
174262 [Executor task launch worker for task 12017] ERROR org.apache.spark.executor.Executor - Exception in task 0.0 in stage 31.0 (TID 12017)
java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.hive.serde2.io.TimestampWritable
at org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableTimestampObjectInspector.getPrimitiveJavaObject(WritableTimestampObjectInspector.java:39)
at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14(TableReader.scala:468)
at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14$adapted(TableReader.scala:467)
at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$18(TableReader.scala:493)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:340)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
If read the hudi files directly, the result is correct as expected.
val employeeDF = spark.read.format("hudi").load("/tmp/employee")
employeeDF.show(false)
the result looks like this
+-------------------+--------------------+------------------+----------------------+------------------------------------------------------------------------+---------+---+------+----------+-----------------------+
|_hoodie_commit_time|_hoodie_commit_seqno|_hoodie_record_key|_hoodie_partition_path|_hoodie_file_name |firstname|age|gender|ts |insert_time |
+-------------------+--------------------+------------------+----------------------+------------------------------------------------------------------------+---------+---+------+----------+-----------------------+
|20210206160718 |20210206160718_0_1 |iris |gender=0 |4fd7d48f-7828-4e77-97a5-a5202e32ad08-0_0-21-12008_20210206160718.parquet|iris |44 |0 |1612598839|2021-02-06 16:07:19.251|
|20210206160718 |20210206160718_1_2 |tom |gender=1 |c0014e5c-66d2-49fa-8af2-9a0b3df9bcf7-0_1-21-12009_20210206160718.parquet|tom |45 |1 |1612598839|2021-02-06 16:07:19.251|
+-------------------+--------------------+------------------+----------------------+------------------------------------------------------------------------+---------+---+------+----------+-----------------------+
About this issue
- Original URL
- State: closed
- Created 3 years ago
- Comments: 19 (14 by maintainers)
Hey everyone, I’m also facing this issue. I see some of you guys already worked on some type of fix/workaround. How would you advise dealing with this?
I tried to add
"hoodie.datasource.hive_sync.support_timestamp", trueas an option but it does not look like it’s working.Also, I’ve seen multiple Github issues raised about this issue, and in most of them there’s a link to @li36909’s comment above as a workaround. Unfortunately, as mentioned by @cdmikechen “
TimestampWritableV2is a hive3 class”, and unfortunately we are also relying on Hive2.Is there a workaround for Hive2? I’ll be happy to help with anything to move this forward (given my relatively low familiarity with Hudi…). Thanks a mil!